Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 030501    DOI: 10.1088/0256-307X/27/3/030501
GENERAL |
Bifurcation Control of Current-Mode Buck Converter via TDFC
LU Wei-Guo, XU Ping-Ye, ZHOU Luo-Wei, LUO Quan-Ming
State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044
Cite this article:   
LU Wei-Guo, XU Ping-Ye, ZHOU Luo-Wei et al  2010 Chin. Phys. Lett. 27 030501
Download: PDF(564KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Considering the TDFC controlled current-mode Buck converter featuring periodicity we propose a Fourier-decomposition based method for the bifurcation analysis of this system, hence the theoretical range of control gain of TDFC is determined. In addition, the power-stage experiment circuit is built and the control part is realized in a digital controller. The experimental results show that either bifurcation or chaos in the current-mode Buck converter can be controlled into the expectant period-1 orbit rapidly.
Keywords: 05.45.Gg      05.45.-a      05.45.Pq     
Received: 23 October 2009      Published: 09 March 2010
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/030501       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/030501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Wei-Guo
XU Ping-Ye
ZHOU Luo-Wei
LUO Quan-Ming
[1] Hamill D C et al 1992 IEEE Trans. Power Electron. 7 25
[2] Tse C K et al 2005 Int. J. Bifur. Chaos 15 2263
[3] Qin Z Y, Lu Q S 2007 Chin. Phys. Lett. 24 886
[4] Li D, Wang S L et al 2008 Chin. Phys. Lett. 25 401
[5] Giaouris D et al 2008 IEEE Trans. Circuits Syst. I 55 1084
[6] Yang T et al 2009 Chin. Phys. Lett. 26 120502
[7] Wang L, Xu W et al 2009 Chin. Phys. Lett. 26 100503
[8] Lee T H and Park J H 2009 Chin. Phys. Lett. 26 090507
[9] Xiao M et al 2009 Nonlin. Dynamics 58 319
[10] Poddar G et al 1995 IEEE Trans. Circuits Syst. I 42 502
[11] Lai Y M, Tse C K and Chow M H L 2001 Circuits, Systems and Signal Processing 20 695
[12] Zhou Y et al 2003 Int. J. Bifur. Chaos 13 3459
[13] Batle C et al 1999 Int. J. Circuit Theor. Appl. 27 617
[14] Lu W G et al 2008 Phys. Lett. A 372 3217
[15] Lu W G et al 2009 Chin. Phys. Lett. 26 030503
[16] Fang C C and Abed E H 2001 Proc. Internat. Symp. Circuits Systems 3 209
[17] Lu W G et al 2007 Chin. Phys. Lett. 24 1837
[18] Natsheh A N et al 2009 Chaos, Solitons {\rm\& Fractals 40 2500
[19] Ott E et al 1990 Phys. Rev. Lett. 64 1196
[20] Pyragas K 1992 Phys. Lett. A 170 421
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[3] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 030501
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 030501
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 030501
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 030501
[12] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 030501
[13] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 030501
[14] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 030501
[15] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 030501
Viewed
Full text


Abstract