Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 030308    DOI: 10.1088/0256-307X/27/3/030308
GENERAL |
A New Method to Solve the Spheroidal Wave Equations
TIAN Gui-Hua
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
TIAN Gui-Hua 2010 Chin. Phys. Lett. 27 030308
Download: PDF(278KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The perturbation method in supersymmetric quantum mechanics is used to study the spheroidal wave functions' eigenvalue problem. The super-potential are solved in series of the parameter α, and the general form of all its terms is obtained. This means that the spheroidal problem is solved completely in the way for the ground eigen-value problem. The shape invariance property is proved retained for the super-potential and subsequently all the excited eigen-value problem could be solved. The results show that the spheroidal wave equations are integrable.
Keywords: 03.65.Ge      02.30.Gp      11.30.Pb     
Received: 15 January 2010      Published: 09 March 2010
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Gp (Special functions)  
  11.30.Pb (Supersymmetry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/030308       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/030308
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TIAN Gui-Hua
[1] Flammer C 1956 Spheroidal Wave Functions (Stanford, CA: Stanford University)
[2] Stratton J A, Morse J P M, Chu L J, Little J D C and Corbato F J 1956 Spheroidal Wave Functions (New York: John Wiley and Sons Inc.)
[3] Li L W, Kang X K and Leong M S 2002 Spheroidal Wave Functions in Electromagnetic Theory (New York: John Wiley and Sons, Inc.)
[4] Slepian D and Pollak H O 1961 Bell. Syst. Tech. J 40 43
[5] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 268 and references therein
[6] Khare A and Sukhatme U 1988 J. Phys. A 21 L501
[7] Tian G H and Zhong S Q 2009 Arxiv: 0906.4685,V2; 0906.4685,V3; 0906.4687,V3
[8] Tang W L and Tian G H 2009 Solving the Spheroidal Vave Equation with Small $c$ by the SUSYQM Method (preprint)
[9] Gradsbteyn I S and Ryzbik L M 2000 Table of Integrals, Series, and Products 6th edn (Singapore: Elsevier)
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 030308
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 030308
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 030308
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 030308
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 030308
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 030308
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 030308
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 030308
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 030308
[10] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 030308
[11] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 030308
[12] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 030308
[13] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 030308
[14] ZHANG Ping, CAI Liang, LIAN Zeng-Ju, PAN Xiao-Yin. Density Profile of a Hard Disk Liquid System under Gravity[J]. Chin. Phys. Lett., 2010, 27(8): 030308
[15] Altu&#, , Arda, Ramazan Sever. Effective Mass Schrödinger Equation via Point Canonical Transformation[J]. Chin. Phys. Lett., 2010, 27(7): 030308
Viewed
Full text


Abstract