GENERAL |
|
|
|
|
Bifurcation Control of Current-Mode Buck Converter via TDFC |
LU Wei-Guo, XU Ping-Ye, ZHOU Luo-Wei, LUO Quan-Ming |
State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 |
|
Cite this article: |
LU Wei-Guo, XU Ping-Ye, ZHOU Luo-Wei et al 2010 Chin. Phys. Lett. 27 030501 |
|
|
Abstract Considering the TDFC controlled current-mode Buck converter featuring periodicity we propose a Fourier-decomposition based method for the bifurcation analysis of this system, hence the theoretical range of control gain of TDFC is determined. In addition, the power-stage experiment circuit is built and the control part is realized in a digital controller. The experimental results show that either bifurcation or chaos in the current-mode Buck converter can be controlled into the expectant period-1 orbit rapidly.
|
Keywords:
05.45.Gg
05.45.-a
05.45.Pq
|
|
Received: 23 October 2009
Published: 09 March 2010
|
|
PACS: |
05.45.Gg
|
(Control of chaos, applications of chaos)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
|
|
|
[1] Hamill D C et al 1992 IEEE Trans. Power Electron. 7 25 [2] Tse C K et al 2005 Int. J. Bifur. Chaos 15 2263 [3] Qin Z Y, Lu Q S 2007 Chin. Phys. Lett. 24 886 [4] Li D, Wang S L et al 2008 Chin. Phys. Lett. 25 401 [5] Giaouris D et al 2008 IEEE Trans. Circuits Syst. I 55 1084 [6] Yang T et al 2009 Chin. Phys. Lett. 26 120502 [7] Wang L, Xu W et al 2009 Chin. Phys. Lett. 26 100503 [8] Lee T H and Park J H 2009 Chin. Phys. Lett. 26 090507 [9] Xiao M et al 2009 Nonlin. Dynamics 58 319 [10] Poddar G et al 1995 IEEE Trans. Circuits Syst. I 42 502 [11] Lai Y M, Tse C K and Chow M H L 2001 Circuits, Systems and Signal Processing 20 695 [12] Zhou Y et al 2003 Int. J. Bifur. Chaos 13 3459 [13] Batle C et al 1999 Int. J. Circuit Theor. Appl. 27 617 [14] Lu W G et al 2008 Phys. Lett. A 372 3217 [15] Lu W G et al 2009 Chin. Phys. Lett. 26 030503 [16] Fang C C and Abed E H 2001 Proc. Internat. Symp. Circuits Systems 3 209 [17] Lu W G et al 2007 Chin. Phys. Lett. 24 1837 [18] Natsheh A N et al 2009 Chaos, Solitons {\rm\& Fractals 40 2500 [19] Ott E et al 1990 Phys. Rev. Lett. 64 1196 [20] Pyragas K 1992 Phys. Lett. A 170 421 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|