Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 030307    DOI: 10.1088/0256-307X/27/3/030307
GENERAL |
Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems
ZHENG Shi-Wang1, XIE Jia-Fang2, WANG Jian-Bo1, CHEN Xiang-Wei1
1Department of Physics and Information Engineering, Shangqiu Teachers College, Shangqiu 476000 2College of Science, North China University of Technology, Beijing 100144
Cite this article:   
ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo et al  2010 Chin. Phys. Lett. 27 030307
Download: PDF(301KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As a direct result of Mei symmetry of the Ténoff equation for non-holonomic mechanical systems, another conserved quantity is studied. The expression and the determining equations of the above conserved quantity are also presented. Using this method, it is easier to find out conserved quantity than ever. In the last, an example is presented to illustrate applications of the new results.
Keywords: 03.65.-w      11.30.-j      45.20.Jj      02.20.Sv     
Received: 23 November 2009      Published: 09 March 2010
PACS:  03.65.-w (Quantum mechanics)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  02.20.Sv (Lie algebras of Lie groups)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/030307       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/030307
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Shi-Wang
XIE Jia-Fang
WANG Jian-Bo
CHEN Xiang-Wei
[1] Noether A E 1918 Nachr. Akad. Wiss. G\"{ottingen. Math. Phys. K$\!$I I$\!$I 235
[2] Mei F X, Xie J F and Gang T Q 2008 Commun. Theor. Phys. 49 1413
[3] Xie J F, Mei F X and Gang T Q 2008 Commun. Theor. Phys. 50 884
[4] Fu J L, Wang X J and Xie F P 2008 Chin. Phys. Lett. 25 2413
[5] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[6] Luo S K 2007 Chin. Phys. 16 3182
[7] Lou Z M 2007 Acta Phys. Sin. 56 2475 (in Chinese)
[8] Chen X W, Liu C M and Li Y M 2006 Chin. Phys. 15 470
[9] Luo S K 2007 Chin. Phys. Lett. 24 3017
[10] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[11] Jia L Q, Cui J C, Luo S K and Yang X F 2009 Chin. Phys. Lett. 26 030303
[12] Cai J L 2009 Chin. Phys. Lett. 25 1523
[13] Liu C, Liu S X, Mei F X and Guo Y X 2008 Acta Phys. Sin. 57 6709 (in Chinese)
[14] Fu J L, Chen L Q and Bai J H 2005 Chin. Phys. 14 6
[15] Zhang H B, Chen L Q and Gu S L 2004 Commun. Theor. Phys. 42 321
[16] Zhang Y 2007 Acta Phys. Sin. 56 3054 (in Chinese)
[17] Fang J H, Ding N and Wang P 2007 Chin. Phys. 16 887
[18] Mei F X 2000 J. Beijing Inst. Technol. 9 120
[19] Jia L Q, Luo S K and Zhang Y Y 2008 Acta Phys. Sin. 57 2006 (in Chinese)
[20] Zhang Y and Mei F X 2003 Chin. Phys. 12 936
[21] Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese)
[22] Xia L L and Zhao X L 2009 Chin. Phys. Lett. 26 010203
[23] Ge W K 2008 Acta Phys. Sin. 57 6714 (in Chinese)
[24] Zheng S W, Jia L Q and Yu H S 2006 Chin. Phys. 15 1399
[25] Zheng S W and Jia L Q 2007 Acta Phys. Sin. 56 661 (in Chinese)
[26] Zheng S W, Xie J F and Jia L Q 2006 Chin. Phys. Lett. 23 2924
[27] Zheng S W, Xie J F and Jia L Q 2007 Commun. Theor. Phys. 48 43
[28] Zheng S W, Xie J F and Zhang Q H 2007 Chin. Phys. Lett. 24 2164
[29] Zheng S W, Xie J F and Chen W C 2008 Chin. Phys. Lett. 25 809
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 030307
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 030307
[3] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 030307
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 030307
[5] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 030307
[6] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 030307
[7] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 030307
[8] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 030307
[9] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 030307
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 030307
[11] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 030307
[12] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 030307
[13] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 030307
[14] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 030307
[15] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 030307
Viewed
Full text


Abstract