Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 030305    DOI: 10.1088/0256-307X/27/3/030305
GENERAL |
Bell Operator Method to Classify Local Realistic Theories
Koji Nagata
Department of Agriculture and of Veterinary Medicine, National Research Center for Protozoan Diseases, University of Obihiro, West 2-13, Inada, Obihiro, Hokkaido 080-8555 Japan
Cite this article:   
Koji Nagata 2010 Chin. Phys. Lett. 27 030305
Download: PDF(284KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We review the historical fact of multipartite Bell inequalities with an arbitrary number of settings. An explicit local realistic model for the values of a correlation function, given in a two-setting Bell experiment (two-setting model), works only for the specific set of settings in the given experiment, but cannot construct a local realistic model for the values of a correlation function, given in a continuous-infinite settings Bell experiment (infinite-setting model), even though there exist two-setting models for all directions in space. Hence, the two-setting model does not have the property that the infinite-setting model has. Here, we show that an explicit two-setting model cannot construct a local realistic model for the values of a correlation function, given in an M-setting Bell experiment (M-setting model), even though there exist two-setting models for the M measurement directions chosen in the given M-setting experiment. Hence, the two-setting model does not have the property that the M-setting model has.
Keywords: 03.65.Ca      03.65.Ud     
Received: 13 May 2009      Published: 09 March 2010
PACS:  03.65.Ca (Formalism)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/030305       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/030305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Koji Nagata
[1] Einstein A et al 1935 Phys. Rev. 47 777
[2] Bell J S 1964 Physics (New York, Long Island City) 1 195
[3] Redhead M 1989 Incompleteness, Nonlocality and Realism Second Impression (Oxford: Clarendon)
[4] Peres A 1993 Quantum Theory: Concepts and Methods (Dordrecht: Kluwer Academic)
[5] Aspect A et al 1981 Phys. Rev. Lett. 47 460
[6] Aspect A et al 1982 Phys. Rev. Lett. 49 91
[7] Aspect A et al 1982 Phys. Rev. Lett. 49 1804
[8] Weihs G, Jennewein T, Simon C, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 81 5039
[9] Pan J W, Bouwmeester D, Daniell M, Weinfurter H and Zeilinger A 2000 Nature 403 515
[10] Pan J W, Daniell M, Gasparoni S, Weihs G and Zeilinger A 2001 Phys. Rev. Lett. 86 4435
[11] Howell J C, Lamas-Linares A and Bouwmeester D 2002 Phys. Rev. Lett. 88 030401
[12] Eibl M, Gaertner S, Bourennane M, Kurtsiefer C, \.Zukowski M and Weinfurter H 2003 Phys. Rev. Lett. 90 200403
[13] Zhao Z, Yang T, Chen Y A, Zhang A N, \.Zukowski M and Pan J W 2003 Phys. Rev. Lett. 91 180401
[14] Clauser J F and Horne M A 1974 Phys. Rev. D 10 526
[15] Wigner E P 1970 Am. J. Phys. 38 1005
[16] Bramon A and Nowakowski M 1999 Phys. Rev. Lett. 83 1
[17] Nagata K, Laskowski W, Wie{\'sniak M and \.Zukowski M 2004 Phys. Rev. Lett. 93 230403
[18] Nagata K and Ahn J 2008 Mod. Phys. Lett. A 23 2967
[19] Nagata K 2007 J. Phys. A: Math. Theor. 40 13101
[20] Nagata K and Ahn J 2008 J. Korean Phys. Soc. 53 2216
[21] Nagata K 2008 J. Phys. A: Math. Theor. 41 155308
[22] Nagata K, Laskowski W and Paterek T 2006 Phys. Rev. A 74 062109
[23] \.Zukowski M 1993 Phys. Lett. A 177 290
[24] \.Zukowski M and Kaszlikowski D 1997 Phys. Rev. A 56 R1682
[25] \.Zukowski M 1994 Extensions of Bell Theorem in Quantum Interferometry eds DeMartini F and Zeilinger A (Singapore: World Scientific)
[26] Paterek T, Laskowski W and \.Zukowski M 2006 Mod. Phys. Lett. A 21 111
[27] Braunstein S L, Mann A and Revzen M 1992 Phys. Rev. Lett. 68 3259
[28] \.Zukowski M and Brukner \v{C 2002 Phys. Rev. Lett. 88 210401
[29] Greenberger D M, Horne M A and Zeilinger A 1989 Bell's Theorem, Quantum Theory and Conceptions of the Universe ed Kafatos M (Dordrecht: Kluwer Academic) p 69
[30] Mermin N D 1990 Phys. Rev. Lett. 65 1838
[31] Roy S M and Singh V 1991 Phys. Rev. Lett. 67 2761
[32] Belinskii A V and Klyshko D N 1993 Phys. Usp. 36 653
[33] Werner R F and Wolf M M 2001 Phys. Rev. A 64 032112
[34] Werner R F and Wolf M M 2001 Quantum Inf. Comput. 1 1
[35] Nagata K 2009 Int. J. Theor. Phys. 48 3293
Related articles from Frontiers Journals
[1] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 030305
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 030305
[3] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 030305
[4] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 030305
[5] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 030305
[6] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 030305
[7] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 030305
[8] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 030305
[9] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 030305
[10] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 030305
[11] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 030305
[12] TIAN Li-Jun, **, QIN Li-Guo, ZHANG Hong-Biao . Entanglement of Two-Superconducting-Qubit System Coupled with a Fixed Capacitor[J]. Chin. Phys. Lett., 2011, 28(5): 030305
[13] QIU Liang . Nonlocality Sudden Birth and Transfer in System and Environment[J]. Chin. Phys. Lett., 2011, 28(3): 030305
[14] Sudha, **, B. G. Divyamani, A. R. Usha Devi, . Loss of Exchange Symmetry in Multiqubit States under Ising Chain Evolution[J]. Chin. Phys. Lett., 2011, 28(2): 030305
[15] ZHA Xin-Wei**, MA Gang-Long . Classification of Four-Qubit States by Means of a Stochastic Local Operation and the Classical Communication Invariant[J]. Chin. Phys. Lett., 2011, 28(2): 030305
Viewed
Full text


Abstract