GENERAL |
|
|
|
|
Bell Operator Method to Classify Local Realistic Theories |
Koji Nagata |
Department of Agriculture and of Veterinary Medicine, National Research Center for Protozoan Diseases, University of Obihiro, West 2-13, Inada, Obihiro, Hokkaido 080-8555 Japan |
|
Cite this article: |
Koji Nagata 2010 Chin. Phys. Lett. 27 030305 |
|
|
Abstract We review the historical fact of multipartite Bell inequalities with an arbitrary number of settings. An explicit local realistic model for the values of a correlation function, given in a two-setting Bell experiment (two-setting model), works only for the specific set of settings in the given experiment, but cannot construct a local realistic model for the values of a correlation function, given in a continuous-infinite settings Bell experiment (infinite-setting model), even though there exist two-setting models for all directions in space. Hence, the two-setting model does not have the property that the infinite-setting model has. Here, we show that an explicit two-setting model cannot construct a local realistic model for the values of a correlation function, given in an M-setting Bell experiment (M-setting model), even though there exist two-setting models for the M measurement directions chosen in the given M-setting experiment. Hence, the two-setting model does not have the property that the M-setting model has.
|
Keywords:
03.65.Ca
03.65.Ud
|
|
Received: 13 May 2009
Published: 09 March 2010
|
|
|
|
|
|
[1] Einstein A et al 1935 Phys. Rev. 47 777 [2] Bell J S 1964 Physics (New York, Long Island City) 1 195 [3] Redhead M 1989 Incompleteness, Nonlocality and Realism Second Impression (Oxford: Clarendon) [4] Peres A 1993 Quantum Theory: Concepts and Methods (Dordrecht: Kluwer Academic) [5] Aspect A et al 1981 Phys. Rev. Lett. 47 460 [6] Aspect A et al 1982 Phys. Rev. Lett. 49 91 [7] Aspect A et al 1982 Phys. Rev. Lett. 49 1804 [8] Weihs G, Jennewein T, Simon C, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 81 5039 [9] Pan J W, Bouwmeester D, Daniell M, Weinfurter H and Zeilinger A 2000 Nature 403 515 [10] Pan J W, Daniell M, Gasparoni S, Weihs G and Zeilinger A 2001 Phys. Rev. Lett. 86 4435 [11] Howell J C, Lamas-Linares A and Bouwmeester D 2002 Phys. Rev. Lett. 88 030401 [12] Eibl M, Gaertner S, Bourennane M, Kurtsiefer C, \.Zukowski M and Weinfurter H 2003 Phys. Rev. Lett. 90 200403 [13] Zhao Z, Yang T, Chen Y A, Zhang A N, \.Zukowski M and Pan J W 2003 Phys. Rev. Lett. 91 180401 [14] Clauser J F and Horne M A 1974 Phys. Rev. D 10 526 [15] Wigner E P 1970 Am. J. Phys. 38 1005 [16] Bramon A and Nowakowski M 1999 Phys. Rev. Lett. 83 1 [17] Nagata K, Laskowski W, Wie{\'sniak M and \.Zukowski M 2004 Phys. Rev. Lett. 93 230403 [18] Nagata K and Ahn J 2008 Mod. Phys. Lett. A 23 2967 [19] Nagata K 2007 J. Phys. A: Math. Theor. 40 13101 [20] Nagata K and Ahn J 2008 J. Korean Phys. Soc. 53 2216 [21] Nagata K 2008 J. Phys. A: Math. Theor. 41 155308 [22] Nagata K, Laskowski W and Paterek T 2006 Phys. Rev. A 74 062109 [23] \.Zukowski M 1993 Phys. Lett. A 177 290 [24] \.Zukowski M and Kaszlikowski D 1997 Phys. Rev. A 56 R1682 [25] \.Zukowski M 1994 Extensions of Bell Theorem in Quantum Interferometry eds DeMartini F and Zeilinger A (Singapore: World Scientific) [26] Paterek T, Laskowski W and \.Zukowski M 2006 Mod. Phys. Lett. A 21 111 [27] Braunstein S L, Mann A and Revzen M 1992 Phys. Rev. Lett. 68 3259 [28] \.Zukowski M and Brukner \v{C 2002 Phys. Rev. Lett. 88 210401 [29] Greenberger D M, Horne M A and Zeilinger A 1989 Bell's Theorem, Quantum Theory and Conceptions of the Universe ed Kafatos M (Dordrecht: Kluwer Academic) p 69 [30] Mermin N D 1990 Phys. Rev. Lett. 65 1838 [31] Roy S M and Singh V 1991 Phys. Rev. Lett. 67 2761 [32] Belinskii A V and Klyshko D N 1993 Phys. Usp. 36 653 [33] Werner R F and Wolf M M 2001 Phys. Rev. A 64 032112 [34] Werner R F and Wolf M M 2001 Quantum Inf. Comput. 1 1 [35] Nagata K 2009 Int. J. Theor. Phys. 48 3293 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|