Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 025202    DOI: 10.1088/0256-307X/27/2/025202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability
WANG Li-Feng1,4, YE Wen-Hua2,3,1, LI Ying-Jun4
1Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 1000882Department of Physics, Zhejiang University, Hangzhou 3100283Center for Applied Physics and Technology, Peking University, Beijing 1008714State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology, Beijing 100083
Cite this article:   
WANG Li-Feng, YE Wen-Hua, LI Ying-Jun 2010 Chin. Phys. Lett. 27 025202
Download: PDF(509KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The linear growth rate of the anisotropic preheating ablative Rayleigh-Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ (T)=κSH [1+f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse [Phys. Rev. Lett. 98 (2007) 245001].
Keywords: 52.57.Fg      52.35.Py      47.20.Ma     
Received: 19 August 2009      Published: 08 February 2010
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/025202       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/025202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Li-Feng
YE Wen-Hua
LI Ying-Jun
[1] Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (London: Oxford University) chap X p 428
[2] Committee on High Energy Density Plasma Physics Plasma Science Committee Board on Physics and Astronomy Division on Engineering and Physical Sciences 2001 Frontiers in High Energy Density Physics (Washington DC: Academic)
[3] Lindl J D, Amendt P and Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[4] Lindl J D 1995 Phys. Plasmas 2 3933
[5] Nuckols J H, Wood L, Thiessen A and Zimmerman G B 1972 Nature 239 139
[6] Remington B A, Weber S V, Haan S W, Kilkenny J D, Glendinning S G, Wallace R J, Goldstein W H, Wilson B G and Nash J K 1993 Phys. Fluids B 5 2589
[7] Kilkenny J D, Glendinning S G, Haan S W, Hammel B A, Lindl J D, Knauer J P and Verdon C P 1994 Phys. Plasmas 1 1379
[8] Weber S V, Remington B A, Haan S W, Wilson B G and Nash J K 1994 Phys. Plasmas 1 3652
[9] Sanz J, Ram\'{\irez J and Ramis R 2002 Phys. Rev. Lett. 89 195002
[10] Glendinning S G, Dixit S N, Hammel B A, Kalantar D H, Key M H, Kilkenny J D, Knauer J P, Pennington D M, Remington B A, Wallace R J and Weber S V 1997 Phys. Rev. Lett. 78 3318
[11] Bodner S E 1974 Phys. Rev. Lett. 33 761
[12] Betti R, Goncharov V N, McCrory R L and Verdon C P 1998 Phys. Plasmas 5 1446
[13] Goncharov V N, Betti R, McCrory R L, Sorotokin P and Verdon C P 1996 Phys. Plasmas 3 1402
[14] Betti R, Goncharov V N, McCrory R L and Verdon C P 1996 Phys. Plasmas 3 2122
[15] Piriz A P, Sanz J and Ibanez L F 1997 Phys. Plasmas 4 1117
[16] Clavin P and Masse L 2004 Phys. Plasmas 11 690
[17] Sanz J, Masse L and Clavin P 2006 Phys. Plasmas 13 102702
[18] Masse L 2007 Phys. Rev. Lett. 98 245001
[19] Ye W H, Zhang W Y and He X T 2000 Acta Phys. Sin. 49 762 (in Chinese)
[20] Ye W H et al 1998 Chin. J. Comput. Phys. 15 276 (in Chinese)
[21] Ye W H, Zhang W Y and Chen G N 1998 High Power Laser and Particle Beams 10 403 (in Chinese)
[22] Wang L F, Ye W H, Fan Z F, Xue C and Li Y J 2009 Chin. Phys. Lett. 26 074704
[23] Wang L F, Ye W H, Fan Z F, Li Y J, He X T and Yu M Y 2009 Europhys. Lett. 86 15002
[24] Wang L F, Ye W H and Li Y J 2008 Acta Phys. Sin. 57 3038 (in Chinese)
[25] Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E 65 57401
[26] Ye W H, Zhang W Y and Chen G N 1999 High Power Laser and Particle Beams 11 613 (in Chinese)
Related articles from Frontiers Journals
[1] CHEN Shao-Yong, WANG Zhong-Tian, TANG Chang-Jian. Excitation of Internal Kink Mode by Circulating Supra-thermal Electrons[J]. Chin. Phys. Lett., 2012, 29(2): 025202
[2] XU Tao**, HU Qi-Ming, HU Xi-Wei, YU Qing-Quan . Locking of Tearing Modes by the Error Field[J]. Chin. Phys. Lett., 2011, 28(9): 025202
[3] ZHANG Xu**, LIU Jin-Hong, Jonathan W. N. . A Numerical Study of Temporal Mixing Layer with Three-Dimensional Mortar Spectral Element Method[J]. Chin. Phys. Lett., 2011, 28(6): 025202
[4] HE Yong**, HU Xi-Wei, JIANG Zhong-He . Similar Rayleigh–Taylor Instability of Shock Fronts Perturbed by Corrugated Interfaces[J]. Chin. Phys. Lett., 2011, 28(5): 025202
[5] TIAN Bao-Lin, ZHANG Xin-Ting, QI Jin**, WANG Shuang-Hu . Effects of a Premixed Layer on the Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2011, 28(11): 025202
[6] JI Xiao-Quan, YANG Qing-Wei, LIU Yi, ZHOU Jun, FENG Bei-Bin, YUAN Bao-Shan. First Observation of Neoclassical Tearing Modes in the HL-2A Tokamak[J]. Chin. Phys. Lett., 2010, 27(6): 025202
[7] PENG Jie, ZHU Ke-Qin. Role of Viscosity Stratification and Insoluble Surfactant in Instability of Two-Layer Channel Flow[J]. Chin. Phys. Lett., 2010, 27(4): 025202
[8] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 025202
[9] G. A. Hoshoudy . Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(12): 025202
[10] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 025202
[11] ZHANG Xu, TAN Duo-Wang. Direct Numerical Simulation of the Rayleigh-Taylor Instability with the Spectral Element Method[J]. Chin. Phys. Lett., 2009, 26(8): 025202
[12] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids[J]. Chin. Phys. Lett., 2009, 26(7): 025202
[13] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 025202
[14] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, LI Ying-Jun. Multimode Coupling Theory for Kelvin-Helmholtz Instability in Incompressible Fluid[J]. Chin. Phys. Lett., 2009, 26(1): 025202
[15] LI Fang, YIN Xie-Yuan, YIN Xie-Zhen. Two-Dimensional Wave Motion on the Charged Surface of a Viscous Liquid[J]. Chin. Phys. Lett., 2008, 25(7): 025202
Viewed
Full text


Abstract