Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 025203    DOI: 10.1088/0256-307X/27/2/025203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers
WANG Li-Feng1,4, YE Wen-Hua2,3,4, LI Ying-Jun1
1State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology, Beijing 1000832Department of Physics, Zhejiang University, Hangzhou 3100283Center for Applied Physics and Technology, Peking University,Beijing 1008714 Laboratory of Computational Physics, Institute of Applied Physics andComputational Mathematics, Beijing 100088
Cite this article:   
WANG Li-Feng, YE Wen-Hua, LI Ying-Jun 2010 Chin. Phys. Lett. 27 025203
Download: PDF(544KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Rayleigh-Taylor instability in two-dimensional incompressible fluids at arbitrary Atwood numbers is studied by expanding the perturbation velocity potential to third order. The second and third harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The mode coupling coefficients are dependent on the Atwood numbers. Our simulations support the weakly nonlinear results. We find that the ratio of the nonlinear saturation amplitude ηs and the perturbation wavelength λ is dependent on the Atwood number AT and the relation is ηs/λ=(1/π)[√2/5/√(1+3AT2 )].
Keywords: 52.57.Fg      47.20.Ma      52.35.Py     
Received: 20 August 2009      Published: 08 February 2010
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/025203       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/025203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Li-Feng
YE Wen-Hua
LI Ying-Jun
[1] Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability(London: Oxford University) chap X
[2] Sharp D 1984 Physica D 12 3
[3] Remington B A, Drake R P and Ryutov D D 2006 Rev. Mod. Phys. 78 755
[4] Remington B A, Arnett D, Drake R P and Takabe H 1999 Science 284 1488
[5] Committee on High Energy Density Plasma Physics Plasma Science Committee Board on Physics and Astronomy Division on Engineering and Physical Sciences 2001 Frontiers in High Energy Density Physics (Washington DC: Academic)
[6] Jacobs J W and Catton I 1988 J. Fluid Mech. 187 329
[7] Jacobs J W and Catton I 1988 J. Fluid Mech. 187 353
[8] Landau L D and Lifshitz E M 1959 Fluid Mechanics (Oxford: Pergamon)
[9] Wang L F, Ye W H, Li Y J 2008 Acta Phys. Sin. 57 3038 (in Chinese)
[10] Layzer 1955 Astrophys J. 122 1
[11] Lindl J D, Amendt P and Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[12] Wang L F, Ye W H, Fan Z F, Xue C and Li Y J 2009 Chin. Phys. Lett. 26 074704
[13] Wang L F, Ye W H, Fan Z F, Li Y J, He X T and Yu M Y 2009 Europhys. Lett. 86 15002
[14] Wang L F, Ye W H, Li Y J and Meng L M 2008 Chin. Phys. B 17 3792
[15] Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E 65 57401
[16] Ye W H, Zhang W Y and He X T 2000 Acta Phys. Sin. 49 762 (in Chinese)
[17] Ye W H et al 1998 Chin. J. Comput. Phys. 15 276 (in Chinese).
[18] Ye W H, Zhang W Y and Chen G N 1998 High Power Laser and Particle Beams 10 403 (in Chinese)
[19] Ye W H, Zhang W Y and Chen G N 1999 High Power Laser and Particle Beams 11 613 (in Chinese)
[20] Ye W H 1998 High Power Laser and Particle Beams 10 567 (in Chinese)
Related articles from Frontiers Journals
[1] CHEN Shao-Yong, WANG Zhong-Tian, TANG Chang-Jian. Excitation of Internal Kink Mode by Circulating Supra-thermal Electrons[J]. Chin. Phys. Lett., 2012, 29(2): 025203
[2] XU Tao**, HU Qi-Ming, HU Xi-Wei, YU Qing-Quan . Locking of Tearing Modes by the Error Field[J]. Chin. Phys. Lett., 2011, 28(9): 025203
[3] ZHANG Xu**, LIU Jin-Hong, Jonathan W. N. . A Numerical Study of Temporal Mixing Layer with Three-Dimensional Mortar Spectral Element Method[J]. Chin. Phys. Lett., 2011, 28(6): 025203
[4] HE Yong**, HU Xi-Wei, JIANG Zhong-He . Similar Rayleigh–Taylor Instability of Shock Fronts Perturbed by Corrugated Interfaces[J]. Chin. Phys. Lett., 2011, 28(5): 025203
[5] TIAN Bao-Lin, ZHANG Xin-Ting, QI Jin**, WANG Shuang-Hu . Effects of a Premixed Layer on the Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2011, 28(11): 025203
[6] JI Xiao-Quan, YANG Qing-Wei, LIU Yi, ZHOU Jun, FENG Bei-Bin, YUAN Bao-Shan. First Observation of Neoclassical Tearing Modes in the HL-2A Tokamak[J]. Chin. Phys. Lett., 2010, 27(6): 025203
[7] PENG Jie, ZHU Ke-Qin. Role of Viscosity Stratification and Insoluble Surfactant in Instability of Two-Layer Channel Flow[J]. Chin. Phys. Lett., 2010, 27(4): 025203
[8] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 025203
[9] G. A. Hoshoudy . Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(12): 025203
[10] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 025203
[11] ZHANG Xu, TAN Duo-Wang. Direct Numerical Simulation of the Rayleigh-Taylor Instability with the Spectral Element Method[J]. Chin. Phys. Lett., 2009, 26(8): 025203
[12] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids[J]. Chin. Phys. Lett., 2009, 26(7): 025203
[13] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 025203
[14] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, LI Ying-Jun. Multimode Coupling Theory for Kelvin-Helmholtz Instability in Incompressible Fluid[J]. Chin. Phys. Lett., 2009, 26(1): 025203
[15] LI Fang, YIN Xie-Yuan, YIN Xie-Zhen. Two-Dimensional Wave Motion on the Charged Surface of a Viscous Liquid[J]. Chin. Phys. Lett., 2008, 25(7): 025203
Viewed
Full text


Abstract