Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 024211    DOI: 10.1088/0256-307X/27/2/024211
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
An Efficient Pulsed CH3OH Terahertz Laser Pumped by a TEA CO2 Laser
JIU Zhi-Xian, ZUO Du-Luo, MIAO Liang, QI Chun-Chao, CHENG Zu-Hai
Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
JIU Zhi-Xian, ZUO Du-Luo, MIAO Liang et al  2010 Chin. Phys. Lett. 27 024211
Download: PDF(401KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An efficient pulsed CH3OH terahertz (THz) laser pumped by a TEA CO2 laser is investigated experimentally. To improve photon conversion efficiency and THz laser energy, two cavity configurations of the TEA CO2 laser, which is external and semi-external, are evaluated. The pump intensities are about 4.7 MW/cm2 and 1.2 MW/cm2, respectively. Higher pump intensity and more stable single lines are obtained in the external cavity. For the 3.8 J pump energy of the 9P(16) transition in the external cavity, the maximum terahertz output energy with 570.5 μm wavelength at 160 Pa is 431 μJ. With a 6 J energy pulse in terms of a semi-external cavity, a 353 μJ terahertz emission (570.5 μm) is produced. The corresponding photon conversion efficiencies are 1.36% and 0.705%, increasing by a factor of about 2.
Keywords: 42.55.Lt      07.57.Hm      33.80.Be      82.53.Kp     
Received: 04 September 2009      Published: 08 February 2010
PACS:  42.55.Lt (Gas lasers including excimer and metal-vapor lasers)  
  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
  33.80.Be (Level crossing and optical pumping)  
  82.53.Kp (Coherent spectroscopy of atoms and molecules)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/024211       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/024211
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIU Zhi-Xian
ZUO Du-Luo
MIAO Liang
QI Chun-Chao
CHENG Zu-Hai
[1] Chang T Y, Bridges T J and Burkhardt E G 1970 Appl. Phys. Lett. 17 249
[2] Moruzzi G, Moraes J C S and Strumia F 1992 Int. J. Infrared Millimeter Waves 13 1269
[3] Pereira D, Moraes J C S, Telles E M, Scalabrin A, Strumia F, Moretti A, Carelli G and Massa C A 1994 Int. J. Infrared Millimeter Waves 15 1
[4] Zerbetto S C and Vasconcellos E C C 1994 Int. J. Infrared Millimeter Waves 15 889
[5] Xu L H and Lees R M 1996 IEEE J. Quantum Electron. 32 392
[6] Moraes J C S, Carelli G, Moretti A, Moruzzi G and Strumia F 1996 J. Mol. Spectrosc. 177 302
[7] Vasconcellos E C C, Zerbetto S C, Zink L R, Evenson K M, Lees R M and Xu L H 1998 J. Mol. Spectrosc. 188 102
[8] Pereira D and Scalabrin A 1987 Appl. Phys. B 44 67
[9] Moraes J C S, Carelli G, Moretti A, Moruzzi G and Strumia F 1998 J. Mol. Spectrosc. 188 37 \hypertarget{e14{
[10] Lees R M and Xu L H 1999 J. Mol. Spectrosc. 196 220
[11] Telles E M, Hitoshi Odashima, Zink L R and Evenson K M 1999 J. Mol. Spectrosc. 195 360 \hypertarget{e15{
[12] Vasconcellos E C C, Zerbetto S C, Zink L R and Evenson K M 2000 Int. J. Infrared Millimeter Waves 21 4
[13] Jerald R I, Brent L B and George F C 1975 Opt. Commun. 14 385
[14] Brown F, Silver E, Chase C E, Button K J and Lax B 1972 IEEE J. Quantum Electron. 8 499
[15] Huang X, Qin J Y, Zheng X S, Luo X Z and Lin Y K 1997 Int. J. Infrared Millimeter Waves 18 619
[16] Huang X, Qin J Y, Zheng X S, Bao Y X, Luo X Z and Lin Y K 1997 Int. J. Infrared Millimeter Waves 18 1539
\hypertarget{e16{
[17] Hosako I, Sekine N, Patrashin M, Saito S, Fukunaga K, Kasai Y, Baron P, Seta T, Mendrok J, Ochiai S and Yasuda H 2007 Proc. IEEE 95 1611
[18] Ernest V L, Donald R S and Robert L M 1973 Appl. Opt. 12 398
[19] Grischkowsky D, Keiding S, Martin V E and Fattinger C 1990 J. Opt. Soc. Am. B 7 2006
[20] Heppnet J, Welss C O, Hubner U and Schinn G 1980 IEEE J. Quantum Electron. 16 392
\hypertarget{e17{
[21] Marchetti S, Martinelli M, Simili R, Fantoni R and Giorgi M 2000 Infrared Phys. Technol. 41 197
Related articles from Frontiers Journals
[1] LIU Dong, FU Yong-Qi, YANG Le-Chen, ZHANG Bao-Shun, LI Hai-Jun, FU Kai, XIONG Min. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors[J]. Chin. Phys. Lett., 2012, 29(6): 024211
[2] LI Guo-Fu,**,YU Hai-Jun,DUO Li-Ping,JIN Yu-Qi,WANG Jian,SANG Feng-Ting,WANG De-Zhen. Pulsed Chemical Oxygen Iodine Lasers Excited by Pulse Gas Discharge with the Assistance of Surface Sliding Discharge Pre-ionization[J]. Chin. Phys. Lett., 2012, 29(5): 024211
[3] MIAO Liang**,ZUO Du-Luo,CHENG Zu-Hai. A Terahertz Wavemeter Based on a Fabry–Perot Interferometer Composed of Two Identical Ge Etalons[J]. Chin. Phys. Lett., 2012, 29(5): 024211
[4] SUN Qi-Zhi, FANG Dong-Fan**, LIU Wei, LIU Zheng-Fen, CHI Yuan, DAI Wen-Feng, HAN Wen-Hui . Experiments on Broadband EMP Radiation with an Axial Mode Helix Antenna[J]. Chin. Phys. Lett., 2011, 28(9): 024211
[5] ZHUANG Wei, CHEN Jing-Biao** . Feasibility of Extreme Ultraviolet Active Optical Clock[J]. Chin. Phys. Lett., 2011, 28(8): 024211
[6] RAO Zhi-Ming, WANG Xin-Bing**, LU Yan-Zhao, ZUO Du-Luo, WU Tao . Two Schemes for Generating Efficient Terahertz Waves in Nonlinear Optical Crystals with a Mid-Infrared CO2 Laser[J]. Chin. Phys. Lett., 2011, 28(7): 024211
[7] SHA Peng-Fei, XIN Jian-Guo**, FANG Li-Ping, LIU Zheng-Fan, ZHOU Ying, YU Song-Lin, WEN Jian-Guo . Coupling Frequency Band of the In-Phase Locked Gain Waveguide Array Lasers[J]. Chin. Phys. Lett., 2011, 28(4): 024211
[8] LU Yan-Zhao, WANG Xin-Bing**, MIAO Liang, ZUO Du-Luo, CHENG Zu-Hai . Terahertz Generation in Nonlinear Crystals with Mid-Infrared CO2 Laser[J]. Chin. Phys. Lett., 2011, 28(3): 024211
[9] YANG Zi-Ning, WANG Hong-Yan**, LU Qi-Sheng, HUA Wei-Hong, XU Xiao-Jun . An 80-W Laser Diode Array with 0.1 nm Linewidth for Rubidium Vapor Laser Pumping[J]. Chin. Phys. Lett., 2011, 28(10): 024211
[10] MA Ning, WANG Mei-Shan, XIONG De-Lin, YANG Chuan-Lu, MA Xiao-Guang, WANG De-Hua. Theoretical Study of the Influence of Femtosecond Laser Wavelength on the Evolution of a Double-Minimum Electronic Excited State Wave Packet for NaRb[J]. Chin. Phys. Lett., 2010, 27(7): 024211
[11] LIN Xu-Ling, ZHANG Jian-Bing, LU Yu, LUO Feng, LU Shan-Liang, YU Tie-Min, DAI Zhi-Min,. High Power THz Undulator Radiation from Linear Accelerator[J]. Chin. Phys. Lett., 2010, 27(4): 024211
[12] CHEN Hua, WU Xiu-Mei, YANG Wen-Xing. Modulated Terahertz Transmission through Sub-Wavelength Cu Grating by Liquid Water[J]. Chin. Phys. Lett., 2010, 27(1): 024211
[13] SHA Peng-Fei, Xin Jian-Guo. A Kilowatt Radio-Frequency Excited Diffusively Cooled All-Metal Slab Waveguide CO2 Laser[J]. Chin. Phys. Lett., 2009, 26(7): 024211
[14] QI Chun-Chao, ZUO Du-Luo, LU Yan-Zhao, TANG Jian, YANG Chen-Guang, KE Lin-Da, CHENG Zu-Hai,. An Efficient Photon Conversion Efficiency Ammonia Terahertz Cavity Laser[J]. Chin. Phys. Lett., 2009, 26(12): 024211
[15] LIN Xu-Ling, ZHANG Jian-Bing, LU YU, LUO Feng, LU Shan-Liang, YU Tie-Min, DAI Zhi-Min,. Characterizing THz Coherent Synchrotron Radiation at Femtosecond Linear Accelerator[J]. Chin. Phys. Lett., 2009, 26(12): 024211
Viewed
Full text


Abstract