FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
An Efficient Pulsed CH3OH Terahertz Laser Pumped by a TEA CO2 Laser |
JIU Zhi-Xian, ZUO Du-Luo, MIAO Liang, QI Chun-Chao, CHENG Zu-Hai |
Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 |
|
Cite this article: |
JIU Zhi-Xian, ZUO Du-Luo, MIAO Liang et al 2010 Chin. Phys. Lett. 27 024211 |
|
|
Abstract An efficient pulsed CH3OH terahertz (THz) laser pumped by a TEA CO2 laser is investigated experimentally. To improve photon conversion efficiency and THz laser energy, two cavity configurations of the TEA CO2 laser, which is external and semi-external, are evaluated. The pump intensities are about 4.7 MW/cm2 and 1.2 MW/cm2, respectively. Higher pump intensity and more stable single lines are obtained in the external cavity. For the 3.8 J pump energy of the 9P(16) transition in the external cavity, the maximum terahertz output energy with 570.5 μm wavelength at 160 Pa is 431 μJ. With a 6 J energy pulse in terms of a semi-external cavity, a 353 μJ terahertz emission (570.5 μm) is produced. The corresponding photon conversion efficiencies are 1.36% and 0.705%, increasing by a factor of about 2.
|
Keywords:
42.55.Lt
07.57.Hm
33.80.Be
82.53.Kp
|
|
Received: 04 September 2009
Published: 08 February 2010
|
|
PACS: |
42.55.Lt
|
(Gas lasers including excimer and metal-vapor lasers)
|
|
07.57.Hm
|
(Infrared, submillimeter wave, microwave, and radiowave sources)
|
|
33.80.Be
|
(Level crossing and optical pumping)
|
|
82.53.Kp
|
(Coherent spectroscopy of atoms and molecules)
|
|
|
|
|
[1] Chang T Y, Bridges T J and Burkhardt E G 1970 Appl. Phys. Lett. 17 249 [2] Moruzzi G, Moraes J C S and Strumia F 1992 Int. J. Infrared Millimeter Waves 13 1269 [3] Pereira D, Moraes J C S, Telles E M, Scalabrin A, Strumia F, Moretti A, Carelli G and Massa C A 1994 Int. J. Infrared Millimeter Waves 15 1 [4] Zerbetto S C and Vasconcellos E C C 1994 Int. J. Infrared Millimeter Waves 15 889 [5] Xu L H and Lees R M 1996 IEEE J. Quantum Electron. 32 392 [6] Moraes J C S, Carelli G, Moretti A, Moruzzi G and Strumia F 1996 J. Mol. Spectrosc. 177 302 [7] Vasconcellos E C C, Zerbetto S C, Zink L R, Evenson K M, Lees R M and Xu L H 1998 J. Mol. Spectrosc. 188 102 [8] Pereira D and Scalabrin A 1987 Appl. Phys. B 44 67 [9] Moraes J C S, Carelli G, Moretti A, Moruzzi G and Strumia F 1998 J. Mol. Spectrosc. 188 37 \hypertarget{e14{ [10] Lees R M and Xu L H 1999 J. Mol. Spectrosc. 196 220 [11] Telles E M, Hitoshi Odashima, Zink L R and Evenson K M 1999 J. Mol. Spectrosc. 195 360 \hypertarget{e15{ [12] Vasconcellos E C C, Zerbetto S C, Zink L R and Evenson K M 2000 Int. J. Infrared Millimeter Waves 21 4 [13] Jerald R I, Brent L B and George F C 1975 Opt. Commun. 14 385 [14] Brown F, Silver E, Chase C E, Button K J and Lax B 1972 IEEE J. Quantum Electron. 8 499 [15] Huang X, Qin J Y, Zheng X S, Luo X Z and Lin Y K 1997 Int. J. Infrared Millimeter Waves 18 619 [16] Huang X, Qin J Y, Zheng X S, Bao Y X, Luo X Z and Lin Y K 1997 Int. J. Infrared Millimeter Waves 18 1539 \hypertarget{e16{ [17] Hosako I, Sekine N, Patrashin M, Saito S, Fukunaga K, Kasai Y, Baron P, Seta T, Mendrok J, Ochiai S and Yasuda H 2007 Proc. IEEE 95 1611 [18] Ernest V L, Donald R S and Robert L M 1973 Appl. Opt. 12 398 [19] Grischkowsky D, Keiding S, Martin V E and Fattinger C 1990 J. Opt. Soc. Am. B 7 2006 [20] Heppnet J, Welss C O, Hubner U and Schinn G 1980 IEEE J. Quantum Electron. 16 392 \hypertarget{e17{ [21] Marchetti S, Martinelli M, Simili R, Fantoni R and Giorgi M 2000 Infrared Phys. Technol. 41 197
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|