Chin. Phys. Lett.  2010, Vol. 27 Issue (12): 124702    DOI: 10.1088/0256-307X/27/12/124702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Slip Magnetohydrodynamic Viscous Flow over a Permeable Shrinking Sheet
FANG Tie-Gang, ZHANG Ji, YAO Shan-Shan
Mechanical and Aerospace Engineering Department, North Carolina State University, 3246 Engineering Building III-Campus, Box 7910, 911 Oval Drive Raleigh, NC 27695, USA
Cite this article:   
FANG Tie-Gang, ZHANG Ji, YAO Shan-Shan 2010 Chin. Phys. Lett. 27 124702
Download: PDF(634KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The magnetohydrodynamic (MHD) flow under slip conditions over a shrinking sheet is solved analytically. The solution is given in a closed form equation and is an exact solution of the full governing Navier–Stokes equations. Interesting solution behavior is observed with multiple solution branches for certain parameter domain. The effects of the mass transfer, slip, and magnetic parameters are discussed.
Keywords: 47.10.Ad      47.15.Cb      52.30.Cv     
Received: 21 June 2010      Published: 23 November 2010
PACS:  47.10.ad (Navier-Stokes equations)  
  47.15.Cb (Laminar boundary layers)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/12/124702       OR      https://cpl.iphy.ac.cn/Y2010/V27/I12/124702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Tie-Gang
ZHANG Ji
YAO Shan-Shan
[1] Altan T, Oh S and Gegel H 1979 Metal Forming Fundamentals and Applications (Metals Park, OH: American Society of Metals )
[2] Fisher E G 1976 Extrusion of Plastics (New York: Wiley)
[3] Tadmor Z and Klein I 1970 Engineering Principles of Plasticating Extrusion, Polymer Science and Engineering Series (New York: Van Norstrand Reinhold)
[4] Sakiadis B C 1961 AIChE J. 7 26
[5] Tsou F K et al 1967 Int. J. Heat Mass Transfer 10 219
[6] Crane L J 1970 Zeitschrift fur Angewandte Mathematik und Physik 21 645
[7] Banks W H H 1983 J. Mech. Theor. Appl. 2 375
[8] Magyari E and Keller B 2000 Eur. J. Mech. B 19 109
[9] Liao S J 2005 Int. J. Heat Mass Transfer. 49 2529
[10] Ishak A, Nazar R and Pop I 2008 J. Eng. Math. 62 23
[11] Wang C Y 1991 Ann. Rev. Fluid Mech. 23 159
[12] Miklavcic M et al 2006 Quart Appl. Math. 64 283
[13] Fang T 2008 Int. J. Heat Mass Transfer. 51 5838
[14] Fang T, Liang W and Lee C F 2008 Comput. Math. Appl. 56 3088
[15] Fang T and Zhong Y 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3768
[16] Lok Y Y, Ishak A and Pop I 2010 Int. J. Numer. Method H (in press)
[17] Sajid M and Hayat T 2009 Chaos, Soliton & Fractals 39 1317
[18] Fang T and Zhang J 2009 Commun. Nonlinear. Sci. Numer. Simulat. 14 2853
[19] Gal-el-Hak M 1999 ASME Trans J. Fluids Engin. 121 5
[20] Shidlovskiy V P 1967 Introduction to the Dynamics of Rarefied Gases (New York : American Elsevier)
[21] Pande G C and Goudas C L 1996 Astrophys. Space Sci. 243 285
[22] Yoshimura A and Prudhomme R K 1998 J. Rheol. 32 53
[23] Andersson H I 2002 Acta Mech. 158 121
[24] Wang C Y 2002 Chem. Eng. Sci. 57 3745
[25] Fang T and Lee C F 2005 Appl. Math. Lett. 18 487
[26] Fang T and Lee C F 2006 Heat Mass Transfer. 42 255
[27] Wang C Y 2009 Nonlin. Analysis-Real World Appl. 10 375
[28] Fang T, Zhang J and Yao S 2009 Commun. Nonlin. Sci. Numer. Simulat. 14 3731
[29] Fang T, Yao S, Zhang J and Aziz A 2010 Commun. Nonlin. Sci. Numer. Simulat. 15 1831
[30] Griffiths L W 1947 Introduction to the Theory of Equations 2nd edn (New York: John Wiley & Sons, Inc.) p 21
[31] Chakrabarti A et al S1979 Quart. Appl. Math. 37 73
[32] Andersson H I 1995 Acta Mech. 113 241
[33] Pop I and Na T Y 1998 Mech. Res. Commun. 25 263
[34] Liao S J 2003 J. Fluid Mech. 488 189
Related articles from Frontiers Journals
[1] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 124702
[2] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 124702
[3] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 124702
[4] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 124702
[5] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. Chin. Phys. Lett., 2011, 28(9): 124702
[6] Krishnendu Bhattacharyya** . Dual Solutions in Unsteady Stagnation-Point Flow over a Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(8): 124702
[7] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 124702
[8] Krishnendu Bhattacharyya . Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(7): 124702
[9] JI Zhen, **, ZHOU Yu-Fen, HOU Tian-Xiang . A Modified Third-Order Semi-Discrete Central-Upwind Scheme for MHD Simulation[J]. Chin. Phys. Lett., 2011, 28(7): 124702
[10] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 124702
[11] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 124702
[12] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate[J]. Chin. Phys. Lett., 2011, 28(2): 124702
[13] ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua . In-depth Study on Cylinder Wake Controlled by Lorentz Force[J]. Chin. Phys. Lett., 2011, 28(12): 124702
[14] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 124702
[15] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 124702
Viewed
Full text


Abstract