FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Slip Magnetohydrodynamic Viscous Flow over a Permeable Shrinking Sheet |
FANG Tie-Gang, ZHANG Ji, YAO Shan-Shan |
Mechanical and Aerospace Engineering Department, North Carolina State University, 3246 Engineering Building III-Campus, Box 7910, 911 Oval Drive Raleigh, NC 27695, USA |
|
Cite this article: |
FANG Tie-Gang, ZHANG Ji, YAO Shan-Shan 2010 Chin. Phys. Lett. 27 124702 |
|
|
Abstract The magnetohydrodynamic (MHD) flow under slip conditions over a shrinking sheet is solved analytically. The solution is given in a closed form equation and is an exact solution of the full governing Navier–Stokes equations. Interesting solution behavior is observed with multiple solution branches for certain parameter domain. The effects of the mass transfer, slip, and magnetic parameters are discussed.
|
Keywords:
47.10.Ad
47.15.Cb
52.30.Cv
|
|
Received: 21 June 2010
Published: 23 November 2010
|
|
PACS: |
47.10.ad
|
(Navier-Stokes equations)
|
|
47.15.Cb
|
(Laminar boundary layers)
|
|
52.30.Cv
|
(Magnetohydrodynamics (including electron magnetohydrodynamics))
|
|
|
|
|
[1] Altan T, Oh S and Gegel H 1979 Metal Forming Fundamentals and Applications (Metals Park, OH: American Society of Metals )
[2] Fisher E G 1976 Extrusion of Plastics (New York: Wiley)
[3] Tadmor Z and Klein I 1970 Engineering Principles of Plasticating Extrusion, Polymer Science and Engineering Series (New York: Van Norstrand Reinhold)
[4] Sakiadis B C 1961 AIChE J. 7 26
[5] Tsou F K et al 1967 Int. J. Heat Mass Transfer 10 219
[6] Crane L J 1970 Zeitschrift fur Angewandte Mathematik und Physik 21 645
[7] Banks W H H 1983 J. Mech. Theor. Appl. 2 375
[8] Magyari E and Keller B 2000 Eur. J. Mech. B 19 109
[9] Liao S J 2005 Int. J. Heat Mass Transfer. 49 2529
[10] Ishak A, Nazar R and Pop I 2008 J. Eng. Math. 62 23
[11] Wang C Y 1991 Ann. Rev. Fluid Mech. 23 159
[12] Miklavcic M et al 2006 Quart Appl. Math. 64 283
[13] Fang T 2008 Int. J. Heat Mass Transfer. 51 5838
[14] Fang T, Liang W and Lee C F 2008 Comput. Math. Appl. 56 3088
[15] Fang T and Zhong Y 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3768
[16] Lok Y Y, Ishak A and Pop I 2010 Int. J. Numer. Method H (in press)
[17] Sajid M and Hayat T 2009 Chaos, Soliton & Fractals 39 1317
[18] Fang T and Zhang J 2009 Commun. Nonlinear. Sci. Numer. Simulat. 14 2853
[19] Gal-el-Hak M 1999 ASME Trans J. Fluids Engin. 121 5
[20] Shidlovskiy V P 1967 Introduction to the Dynamics of Rarefied Gases (New York : American Elsevier)
[21] Pande G C and Goudas C L 1996 Astrophys. Space Sci. 243 285
[22] Yoshimura A and Prudhomme R K 1998 J. Rheol. 32 53
[23] Andersson H I 2002 Acta Mech. 158 121
[24] Wang C Y 2002 Chem. Eng. Sci. 57 3745
[25] Fang T and Lee C F 2005 Appl. Math. Lett. 18 487
[26] Fang T and Lee C F 2006 Heat Mass Transfer. 42 255
[27] Wang C Y 2009 Nonlin. Analysis-Real World Appl. 10 375
[28] Fang T, Zhang J and Yao S 2009 Commun. Nonlin. Sci. Numer. Simulat. 14 3731
[29] Fang T, Yao S, Zhang J and Aziz A 2010 Commun. Nonlin. Sci. Numer. Simulat. 15 1831
[30] Griffiths L W 1947 Introduction to the Theory of Equations 2nd edn (New York: John Wiley & Sons, Inc.) p 21
[31] Chakrabarti A et al S1979 Quart. Appl. Math. 37 73
[32] Andersson H I 1995 Acta Mech. 113 241
[33] Pop I and Na T Y 1998 Mech. Res. Commun. 25 263
[34] Liao S J 2003 J. Fluid Mech. 488 189
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|