Chin. Phys. Lett.  2010, Vol. 27 Issue (12): 124701    DOI: 10.1088/0256-307X/27/12/124701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Can We Obtain a Fractional Lorenz System from a Physical Problem?
YANG Fan, ZHU Ke-Qin
Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Cite this article:   
YANG Fan, ZHU Ke-Qin 2010 Chin. Phys. Lett. 27 124701
Download: PDF(1095KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new fractional-order Lorenz system is obtained from the convection of fractional Maxwell fluids in a circular loop. This is the first fractional-order dynamical system derived from an actual physical problem, and rich dynamical properties are observed. In the case of short fluid relaxation time, with the decreasing effective dimension Σ, we find a critical value of the effective dimension Σcr1, at which the solution of the system undergoes a transition from the chaotic motion to the periodic motion and another critical value Σcr2cr2cr1)at which the regular dynamics of the system returns to the chaotic one. In the case of long relaxation time, the phenomenon of overstability is observed and the decrease of Σ is found to delay the onset of it.
Keywords: 47.50.-d      46.35.+z      47.52.+j      05.45.Ac     
Received: 14 July 2010      Published: 23 November 2010
PACS:  47.50.-d (Non-Newtonian fluid flows)  
  46.35.+z (Viscoelasticity, plasticity, viscoplasticity)  
  47.52.+j (Chaos in fluid dynamics)  
  05.45.Ac (Low-dimensional chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/12/124701       OR      https://cpl.iphy.ac.cn/Y2010/V27/I12/124701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Fan
ZHU Ke-Qin
[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Tritton D J 1988 Physical Fluid Dynamics (Oxford: Clarendon)
[3] Yang F and Zhu K-Q 2010 Chin. Phys. Lett. 27 034601
[4] Grigorenko I et al 2003 Phys. Rev. Lett. 91 034101
[5] Hilfer R 2000 Applications of Fractional Calculus in Physics (Singapore: World Scientific)
[6] Schiessel H et al 1995 J. Phys. A 28 6567
[7] Friedrich C 1991 Rheol Acta 30 151
[8] Hernández-Jiménez A et al 2001 Polym. Test. 21 325
[9] Podlubny I 1999 Fractional Differential Equations (Orlando: Academic)
[10] Caputo M 1967 Geophys. J. R. Astron. Soc. 13 529
[11] Diethelm K et al 2002 Nonlinear Dynamics 29 3
[12] Li C and Peng G 2004 Chaos, Solitons and Fractals 22 443
[13] Khayat R E 1994 J. Non-Newtonian Fluid Mech. 53 227
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 124701
[2] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 124701
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 124701
[4] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 124701
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 124701
[6] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 124701
[7] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 124701
[8] T. Hayat, Liaqat Ali. Khan, R. Ellahi**, S. Obaidat . Exact Solutions on MHD Flow Past an Accelerated Porous Plate in a Rotating Frame[J]. Chin. Phys. Lett., 2011, 28(5): 124701
[9] T. Hayat, **, F. M. Abbasi, Awatif A. Hendi . Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid[J]. Chin. Phys. Lett., 2011, 28(4): 124701
[10] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 124701
[11] Tasawar Hayat, **, Najma Saleem, Awatif A. Hendi . A Mathematical Model for Studying the Slip Effect on Peristaltic Motion with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(3): 124701
[12] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 124701
[13] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 124701
[14] Eduardo L. Brugnago**, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 124701
[15] M. Mossa Al-sawalha, M. S. M. Noorani . Adaptive Increasing-Order Synchronization and Anti-Synchronization of Chaotic Systems with Uncertain Parameters[J]. Chin. Phys. Lett., 2011, 28(11): 124701
Viewed
Full text


Abstract