Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 076202    DOI: 10.1088/0256-307X/26/7/076202
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Orientation and Rate Dependence of Wave Propagation in Shocked Beta-SiC from Atomistic Simulations
CHENG Qin, WU Heng-An, WANG Yu, WANG Xiu-Xi
CAS Key Laboratory of Materials Behavior and Design, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026
Cite this article:   
CHENG Qin, WU Heng-An, WANG Yu et al  2009 Chin. Phys. Lett. 26 076202
Download: PDF(407KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The orientation dependence of planar wave propagation in beta-SiC is studied via the molecular dynamics (MD) method. Simulations are implemented under impact loadings in four main crystal directions, i.e., <100>, <110>, <111>, and <112>. The dispersion of stress states in different directions increases with rising impact velocity, which implies the anisotropic characteristic of shock wave propagation for beta-SiC materials. We also obtain the Hugoniot relations between the shock wave velocity and the impact velocity, and find that the shock velocity falls into a plateau above a threshold of impact velocity. The shock velocity of the plateaux is dependent on the shock directions, while <111> and <112> can be regarded as equivalent directions as they almost reach the same plateau. A comparison between the atomic stress from MD and the stress from Rankine-Hugoniot jump conditions is also made, and it is found that they agree with each other very well.
Keywords: 62.25.-g      62.50.Ef      62.30.+d     
Received: 24 March 2009      Published: 02 July 2009
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  62.50.Ef (Shock wave effects in solids and liquids)  
  62.30.+d (Mechanical and elastic waves; vibrations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/076202       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/076202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Qin
WU Heng-An
WANG Yu
WANG Xiu-Xi
[1] Levinshte{\aein M E, Rumyantsev S L and Shur M 2001 Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN,SiC, SiGe (New York: Wiley)
[2] O'Connor J R and Smiltens J 1960 Silicon Carbide, aHigh Temperature Semiconductor (Oxford: Proceedings Pergamon)
[3] Pechenik A, Kalia R K and Vashishta P 1999 Computer-aided Design of High-Temperature Materials (New York:Oxford University)
[4] Thorpe M F and Mitkova M I 1997 Amorphous Insulatorsand Semiconductors (Dordrecht: Kluwer Academic)
[5] http://www.ifm.liu.se/matephys/new{\_page/research/sic
[6] Szlufarska I et al 2005 Appl. Phys. Lett. 86021915
[7] Mo Y and Szlufarska I 2007 Appl. Phys. Lett. 90 181926
[8] Wang Y et al 2004 Modelling Simul. Mater. Sci. Eng. 12 1099
[9] Wu H A 2006 Eur. J. Mech. A: Solids 25 370
[10] Kadau K et al 2007 Phys. Rev. Lett. 98 135701
[11] Holian B L et al 2002 Phys. Rev. Lett. 89285501
[12] Kadau K et al 2005 Phys. Rev. B 72 064120
[13] Bringa E M et al 2004 J. Appl. Phys. 96 3797
[14] Germann T C, Holian B L and Lomdahl P S 2000 Phys.Rev. Lett. 84 5351
[15] Zybin S V, Elert M L and Write C T 2002 Phys. Rev.B 66 220102
[16] Luo S N, Li B H, Xie Y and An Q 2008 J. Appl. Phys. 103 093530
[17] Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262
[18] Brenner D W 1990 Phys. Rev. B 42 9458
[19] Tersoff J 1988 Phys. Rev. B 37 6991
[20] Tersoff J 1989 Phys. Rev. B 39 5566
[21] Tersoff J 1990 Phys. Rev. Lett. 64 1757
[22] Tersoff J 1994 Phys. Rev. B 49 16349
[23] Vogler T J and Reinhart W D 2006 J. Appl. Phys. 96 023512
[24] Wang L L and Zhu Z X 2007 Foundations of stresswaves (Singapore: Elsevier)
[25] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
Related articles from Frontiers Journals
[1] LI Ying-Hua,CHANG Jing-Zhen LI Xue-Mei,ZHANG Lin**. Multiphase Equation of States of the Solid and Liquid Phases of Al and Ta[J]. Chin. Phys. Lett., 2012, 29(4): 076202
[2] WANG Yi-Ze, LI Feng-Ming. Band Gap Properties of Magnetoelectroelastic Grid Structures with Initial Stress[J]. Chin. Phys. Lett., 2012, 29(3): 076202
[3] TAN Hao, WANG Hai-Ying**, XIA Meng-Fen, KE Fu-Jiu, BAI Yi-Long . Molecule Statistical Thermodynamics Simulation of Nanoindentation of Single Crystal Copper with EAM Potential[J]. Chin. Phys. Lett., 2011, 28(4): 076202
[4] LIU Jian-Lin**, XIA Re, ZHOU Yue-Ting . Stiction of a Nano-Beam with Surface Effect[J]. Chin. Phys. Lett., 2011, 28(11): 076202
[5] GU Fang, ZHANG Jia-Hong**, XU Lin-Hua, LIU Qing-Quan, LI Min . Influence of Surface Effects on the Elastic Properties of Silicon Nanowires with Different Cross Sections[J]. Chin. Phys. Lett., 2011, 28(10): 076202
[6] B. Y. Thakore, S. G. Khambholja, P. H. Suthar, N. K. Bhatt, A. R. Jani. Collective Modes and Elastic Constants of Liquid Al83Cu17 Binary Alloy[J]. Chin. Phys. Lett., 2010, 27(9): 076202
[7] ZHAO Ya-Jun, CHENG Qian, QIAN Meng-Lu. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope[J]. Chin. Phys. Lett., 2010, 27(5): 076202
[8] HAN Mei, ZHANG Yong, ZHENG Hong-Bo. Effect of Uniaxial Strain on Band Gap of Armchair-Edge Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(3): 076202
[9] GUAN Zhi-Qiang, LUO Gang, MONTELIUS Lars, XU Hong-Xing,. Electromechanical Behavior of Interdigitated SiO2 Cantilever Arrays[J]. Chin. Phys. Lett., 2010, 27(2): 076202
[10] XU Ai-Guo, ZHANG Guang-Cai, LI Hua, ZHU Jian-Shi. Comparison Study on Characteristic Regimes in Shocked Porous Materials[J]. Chin. Phys. Lett., 2010, 27(2): 076202
[11] LI He, YANG Zhou, ZHANG Yi-Min, WEN Bang-Chun. Deflections of Nanowires with Consideration of Surface Effects[J]. Chin. Phys. Lett., 2010, 27(12): 076202
[12] WEN Ji-Hong**, SHEN Hui-Jie, YU Dian-Long, WEN Xi-Sen . Theoretical and Experimental Investigation of Flexural Wave Propagating in a Periodic Pipe with Fluid-Filled Loading[J]. Chin. Phys. Lett., 2010, 27(11): 076202
[13] CHEN Hua, TANG Wen-Hui, RAN Xian-Wen. A New Method for Determination of Sublimation Energy[J]. Chin. Phys. Lett., 2009, 26(4): 076202
[14] TANG Yi-Zhe, ZHENG Zhi-Jun, XIA Meng-Fen, BAI Yi-Long. A Unified Guide to Two Opposite Size Effects in Nano Elastic Materials[J]. Chin. Phys. Lett., 2009, 26(12): 076202
[15] FANG Ming, TANG Shao-Qiang. Efficient and Robust Design for Absorbing Boundary Conditions in Atomistic Computations[J]. Chin. Phys. Lett., 2009, 26(11): 076202
Viewed
Full text


Abstract