Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 076103    DOI: 10.1088/0256-307X/26/7/076103
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
The Effect of Orientation Relaxation on Polymer Melt Crystallization Studied by Monte Carlo Simulations
WANG Mao-Xiang
School of Science, Nanjing University of Science and Technology, Nanjing 210094
Cite this article:   
WANG Mao-Xiang 2009 Chin. Phys. Lett. 26 076103
Download: PDF(268KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We use dynamic Monte Carlo simulations to study the athermal relaxation of bulk extended chains and the isothermal crystallization in intermediately relaxed melts. It is found that the memory of chain orientations in the melt can significantly enhance the crystallization rates. The crystal orientation and lamellar thickness essentially depend on the orientational relaxation. Moreover, there is a transition of the nucleation mechanism during the isothermal crystallization from the intermediately relaxed melts. These results explain the mechanism of the self-nucleation by orientation and suggest that in flow-induced polymer crystallization, the orientational relaxation of chains decides the crystal orientation.
Keywords: 61.25.Hq      82.60.Nh      61.50.Ks     
Received: 04 March 2009      Published: 02 July 2009
PACS:  61.25.Hq  
  82.60.Nh (Thermodynamics of nucleation)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/076103       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/076103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Mao-Xiang
[1] Kelton K F1991 Crystal Nucleation in Liquids andGlasses(Boston: Academic) vol 45
[2] Schultz J M 2001 Polymer Crystallization (Oxford:Oxford University) chapt 6 p 113
[3] Smith D E, Babcock H P and Chu S 1999 Science 283 1724
[4] Lyulin A B, Adolf D B and Davies G R 1999 J. Chem.Phys. 111 758
[5] Schroeder C M, Babcock H P, Shaqfeh E S G and Chu S 2003 Science 301 1515
[6] Dukovski I and Muthukumar M 2003 J. Chem. Phys. 118 6648
[7] Huo H, Meng Y F, Li H F, Jiang S C and An L J 2004 Eur. Phys. J. E 15 167
[8] Hashimoto K and Saito H 2008 Poly. J. 40 900
[9] Blundell D J, Mahendrasingam A, Martin C, Fuller W,MacKerron D H, Harvie J L, Oldman R J and Riekel C 2000 Polymer 41 7793
[10] Somani R H, Yang L, Hsiao B S, Sun T, Pogodina N V andLustiger A 2005 Macromolecules 38 1244
[11] Li L and de Jeu W H 2004 Macromolecules 375646
[12] Yang L, Somani R H, Sics I and Hsiao B S 2004 Macromolecules 37 4845
[13] Kumaraswamy G, Kornfield J A, Yeh F and Hsiao B S 2002 Macromolecules 35 1762
[14] Strobl G 2000 Eur. Phys. J. E 3 165
[15] Lavine M S, Waheed N and Rutledge G C 2003 Polymer 44 1771
[16] Ko M J, Waheed N, Lavine M S and Rutledge G C 2004 J. Chem. Phys. 121 2823
[17] Hu W B and Frenkel D 2005 Adv. Polym. Sci 1911
[18] Hu W B 1998 J. Chem. Phys. 109 3686
[19] Wang M X, Hu W B, Ma Y and Ma Y Q 2005 Macromolecules 38 2806
[20] Fan Q R and Qian R Y 1997 Macromol. Symp. 12459
[21] Khanna Y P and Reimschuessel A C 1988 J. Appl. Poly.Sci. 35 2259
[22] Vasanthan N 2003 J. Appl. Polym. Sci. 90 772
[23] Pan P, Kai W, Zhu B, Dong T and Inoue Y 2007 Macromolecules 40 6898
[24] Jabarin S A 2004 Polymer Engineering and Science 32 1341
[25] Blundell D J, MacKerron D H, Fuller W, Mahendrasingam A,Martin C, Oldman R J, Rule R J and Riekel C 1996 Polymer 37 3303
[26] Wang M X, Hu W B, Ma Y and Ma Y Q 2006 J. Chem.Phys. 124 244901
[27] Ma Y and Hu W B 2008 Soft Matter 4 540
[28] Wunderlich B1976 Macromolecular Physics (New York:Academic) vol 2 pp 70 249
[29] Kobayashi K and Nagasawa T 1970 J. Macromol. Sci.(Physics) B 4 331
[30] Frank F C and Tosi M 1961 Proc. R. Soc. London A 263 323
[31] Hobbs J K, Hill M J and Barham P J 2000 Polymer 42 2167
[32] Wunderlich B 1976 Macromolecular Physics (New York:Academic) vol 2 pp 13 and 81
Related articles from Frontiers Journals
[1] GU Ting-Ting, WU Xiang, QIN Shan, LIU Jing, LI Yan-Chun, ZHANG Yu-Feng. High-Pressure and High-Temperature in situ X−Ray Diffraction Study of FeP2 up to 70 GPa[J]. Chin. Phys. Lett., 2012, 29(2): 076103
[2] DUAN Yi-Feng**, QIN Li-Xia, SHI Li-Wei, TANG Gang . Pressure-Induced Anomalous Phase Transitions and Colossal Enhancements of Piezoelectricity in Ground-State BaTiO3[J]. Chin. Phys. Lett., 2011, 28(4): 076103
[3] FAN Ya, ZHOU Jing, LI Shuang, GUAN Fu-Ying, XU Da-Peng** . Pressure-induced Phase Transition in Oleic Acid Studied by Raman Spectroscopy[J]. Chin. Phys. Lett., 2011, 28(11): 076103
[4] ZHAO Juan, FENG Wan-Xiang, LIU Zhi-Ming, MA Yan-Ming, HE Zhi, CUI Tian, ZOU Guang-Tian. Structural Investigation of Solid Methane at High Pressure[J]. Chin. Phys. Lett., 2010, 27(6): 076103
[5] LIU Yan-Hui, DUAN De-Fang, WANG Lian-Cheng, ZHU Chun-Ye, CUI Tian**. First-Principles Investigations of the Phase Transition and Optical Properties of Solid Oxygen[J]. Chin. Phys. Lett., 2010, 27(12): 076103
[6] LUO Fen, CHENG Yan, JI Guang-Fu, CHEN Xiang-Rong,. Phase Transition and Thermodynamics of Ruthenium Diboride via First-Principles Calculations[J]. Chin. Phys. Lett., 2009, 26(9): 076103
[7] LIU Tie-Cheng, ZHOU Mi, GAO Shu-Qin, LI Zuo-Wei, LI Zhan-Long, ZHANGPeng, LI Liang, LV Tian-Quan, XU Da-Peng. Phase Transition in CCl4 under Pressure: a Raman Spectroscopic Study[J]. Chin. Phys. Lett., 2009, 26(7): 076103
[8] HAO Ai-Min, YANG Xiao-Cui, LI Jie, XIN Wei, ZHANG Su-Hong, ZHANG Xin-Yu, LIU Ri-Ping. First-Principles Study of Structural Stabilities, Electronic and Optical Properties of SrF2 under High Pressure[J]. Chin. Phys. Lett., 2009, 26(7): 076103
[9] JIANG Sheng, BAI Li-Gang, LIU Jing, XIAO Wan-Sheng, LI Xiao-Dong, LI Yan-Chun, TANG Ling-Yun, ZHANG Yu-Feng, ZHANG De-Chun, ZHENG Li-Rong. The Phase Transition of Eu2O3 under High Pressures[J]. Chin. Phys. Lett., 2009, 26(7): 076103
[10] FAN Da-Wei, ZHOU Wen-Ge, LIU Cong-Qiang, WAN Fang, XING Yin-Suo, LIU Jing, LI Yan-Chun, XIE Hong-Sen. Phase Transition and EOS of Cinnabar (α-HgS) at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2009, 26(4): 076103
[11] REN Feng-Zhu, WANG Yuan-Xu, ZHANG Guang-Biao. Pressure-Induced Phase Transition of Ruthenium Diboride[J]. Chin. Phys. Lett., 2009, 26(1): 076103
[12] GAO Ling-Ling, JIANG Sheng, LIU Dan, HAO Jian, JIN Yun-Xia, WANG Feng, WANG Qiu-Shi, LIU Jing, CUI Qi-Liang, ZOU Guang-Tian. High-Pressure Phase Transition in Cyclo-octane[J]. Chin. Phys. Lett., 2008, 25(7): 076103
[13] DU Zhi-Xue, ZHENG Hai-Fei. Raman Spectroscopic Studies of Pressure-Induced Phase Transitions on 1-Dodecene[J]. Chin. Phys. Lett., 2008, 25(5): 076103
[14] YANG Xiao-Cui, HAO Ai-Min, YANG Jie, HAN Yong-Hao, PENG Gang, GAO hun-Xiao, ZOU Guang-Tian. Theoretical Prediction for Structural Stabilities and Optical Properties of SrS, SrSe and SrTe under High Pressure[J]. Chin. Phys. Lett., 2008, 25(5): 076103
[15] LIU Ye, ZHENG Zhong-Yu, QIN Fei, ZHOU Fei, ZHOU Chang-Zhu, ZHANG Dao-Zhong, MENG Qing-Bo, LI Zhi-Yuan. Synthesis and Band Gap Control in Three-Dimensional Polystyrene Opal Photonic Crystals[J]. Chin. Phys. Lett., 2008, 25(11): 076103
Viewed
Full text


Abstract