CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Curvature and Hybridization Effects on the Persistent Current of a Carbon Nanotorus |
XU Ning, DING Jian-Wen, CHEN Hong-Bo, MA Ming-Ming |
Department of Physics and Institute for Nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan 411105 |
|
Cite this article: |
XU Ning, DING Jian-Wen, CHEN Hong-Bo et al 2009 Chin. Phys. Lett. 26 076102 |
|
|
Abstract To accurately describe the persistent current for various toroidal carbon nanotubes (TCNs), a semiempirical sp3 tight-binding model is presented, in which the intrinsic curvature and hybridization have been fully taken into account. The calculations show that the curvature and hybridization can induce dramatic changes in the energy spectra of TCNs such as the Fermi energy EF shifting up, an energy gap opening at EF, and the energy spectrum symmetry about EF destroyed, which leads to a decrease of persistent current and changes in the shape of the flux-dependent current. In the presence of curvature and hybridization, the persistent current in non-armchair TCNs is nearly an order of magnitude lower than that obtained by using the Brillouin-zone folding approach, while it is of the same order of magnitude in armchair TCNs.
|
Keywords:
61.48.De
61.46.Np
73.23.Ra
|
|
Received: 04 November 2008
Published: 02 July 2009
|
|
PACS: |
61.48.De
|
(Structure of carbon nanotubes, boron nanotubes, and other related systems)
|
|
61.46.Np
|
(Structure of nanotubes (hollow nanowires))
|
|
73.23.Ra
|
(Persistent currents)
|
|
|
|
|
[1] Liu J, Dai H, Hafner J. H, Colbert D T, Smalley R E, TansS J and Dekker C 1997 Nature 385 780 [2] Matel R, Shea H R and Avouris P 1997 Nature 386 474 [3] Sano M, Kamino A, Okamura J and Shinkai S 2001 Science 293 1299 [4] Shea H R, Martel R and Avouris Ph 2000 Phys. Rev.Lett. 84 4441 [5] Watanabe H, Manabe C, Shigematsu T and Shimizu M 2001 Appl. Phys. Lett. 78 2928 [6] Lin M F, Chen R B and Shyu F L 1998 Solid StateCommun. 107 227 [7] Oh D-H, Park J M and Kim K S 2000 Phys. Rev. B 62 1600 [8] Latg\'{e A, Rocha C G, Wanderley L A, Pacheco M, OrellanaP and Barticevic Z 2003 Phys. Rev. B 67 155413 [9] Zhang Z H, Yang Z Q, Wang X, Yuan J H, Zhang H, Qiu M andPeng J C 2005 J. Phys.: Condens. Matter 17 4111 [10] Liu C P and Ding J W 2006 J. Phys.: Condens. Matter 18 4077 [11] Lin M F and Chuu D S 1998 Phys. Rev. B 576731 [12] Liu L, Guo G Y, Jayanthi C S and Wu S Y 2002 Phys.Rev. Lett. 88 217206 [13] Latil S, Roche S and Rubio A 2003 Phys. Rev. B 67 165420 [14] Tsai C C, Shyu F L, Chiu C W, Chang C P, Chen R B, andLin M F 2004 Phys. Rev. B 70 075411 [15] Tamura R, Ikuta M, Hirahara T and Tsukada M 2005 Phys. Rev. B 71 045418 [16] Zhang Z H, Yuan J H, Qiu M, Peng J C and Xiao F L 2006 J. Appl. Phys. 99 104311 [17] Lin M F 1998 J. Phys. Soc. Jpn. 62 2218 [18] Lin M F 1998 Phys. Rev. B 58 3629 [19] Shyu F L 2005 Phys. Rev. B 72 045424 [20] Shea H R, Martel R and Avouris Ph 2000 Phys. Rev.Lett. 84 4441 [21] Watanabe H, Manabe C, Shigematsu T and Shimizu M 2001 Appl. Phys. Lett. 78 2928 [22] Cuniberti G, Yi J and Porto M 2002 Appl. Phys.Lett. 81 850 [23] Chou Y Y, Guo G Y, Liu L, Jayanthi C S and Wu S Y 2004 J. Appl. Phys. 96 2249 [24] Liu C P, Guo Z X, Ding J W and Yan X H 2005 PhysicaB 365 109 [25] Guo Z H, Yan X H and Cao J X 2004 Physica B 352 325 [26] Blas\'{e X, Benedict L X, Shirley E L and Louie S G 1994 Phys. Rev. Lett. 72 1878 [27] Ding J W, Yan X H, Cao J X, Tang Y and Yang Q B 2003 J. Phys.: Condens. Matter 15 L439 [28] Charlier J C, Lambin P and Ebbesen T W 1996 Phys.Rev. B 54 12 R8377 [29] Xu N, Ding J W, Chen H B and Ma M M 2009 Eur. Phys.J. B 67 71 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|