Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 076102    DOI: 10.1088/0256-307X/26/7/076102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Curvature and Hybridization Effects on the Persistent Current of a Carbon Nanotorus
XU Ning, DING Jian-Wen, CHEN Hong-Bo, MA Ming-Ming
Department of Physics and Institute for Nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan 411105
Cite this article:   
XU Ning, DING Jian-Wen, CHEN Hong-Bo et al  2009 Chin. Phys. Lett. 26 076102
Download: PDF(451KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To accurately describe the persistent current for various toroidal carbon nanotubes (TCNs), a semiempirical sp3 tight-binding model is presented, in which the intrinsic curvature and hybridization have been fully taken into account. The calculations show that the curvature and hybridization can induce dramatic changes in the energy spectra of TCNs such as the Fermi energy EF shifting up, an energy gap opening at EF, and the energy spectrum symmetry about EF destroyed, which leads to a decrease of persistent current and changes in the shape of the flux-dependent current. In the presence of curvature and hybridization, the persistent current in non-armchair TCNs is nearly an order of magnitude lower than that obtained by using the Brillouin-zone folding approach, while it is of the same order of magnitude in armchair TCNs.
Keywords: 61.48.De      61.46.Np      73.23.Ra     
Received: 04 November 2008      Published: 02 July 2009
PACS:  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
  61.46.Np (Structure of nanotubes (hollow nanowires))  
  73.23.Ra (Persistent currents)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/076102       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/076102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Ning
DING Jian-Wen
CHEN Hong-Bo
MA Ming-Ming
[1] Liu J, Dai H, Hafner J. H, Colbert D T, Smalley R E, TansS J and Dekker C 1997 Nature 385 780
[2] Matel R, Shea H R and Avouris P 1997 Nature 386 474
[3] Sano M, Kamino A, Okamura J and Shinkai S 2001 Science 293 1299
[4] Shea H R, Martel R and Avouris Ph 2000 Phys. Rev.Lett. 84 4441
[5] Watanabe H, Manabe C, Shigematsu T and Shimizu M 2001 Appl. Phys. Lett. 78 2928
[6] Lin M F, Chen R B and Shyu F L 1998 Solid StateCommun. 107 227
[7] Oh D-H, Park J M and Kim K S 2000 Phys. Rev. B 62 1600
[8] Latg\'{e A, Rocha C G, Wanderley L A, Pacheco M, OrellanaP and Barticevic Z 2003 Phys. Rev. B 67 155413
[9] Zhang Z H, Yang Z Q, Wang X, Yuan J H, Zhang H, Qiu M andPeng J C 2005 J. Phys.: Condens. Matter 17 4111
[10] Liu C P and Ding J W 2006 J. Phys.: Condens. Matter 18 4077
[11] Lin M F and Chuu D S 1998 Phys. Rev. B 576731
[12] Liu L, Guo G Y, Jayanthi C S and Wu S Y 2002 Phys.Rev. Lett. 88 217206
[13] Latil S, Roche S and Rubio A 2003 Phys. Rev. B 67 165420
[14] Tsai C C, Shyu F L, Chiu C W, Chang C P, Chen R B, andLin M F 2004 Phys. Rev. B 70 075411
[15] Tamura R, Ikuta M, Hirahara T and Tsukada M 2005 Phys. Rev. B 71 045418
[16] Zhang Z H, Yuan J H, Qiu M, Peng J C and Xiao F L 2006 J. Appl. Phys. 99 104311
[17] Lin M F 1998 J. Phys. Soc. Jpn. 62 2218
[18] Lin M F 1998 Phys. Rev. B 58 3629
[19] Shyu F L 2005 Phys. Rev. B 72 045424
[20] Shea H R, Martel R and Avouris Ph 2000 Phys. Rev.Lett. 84 4441
[21] Watanabe H, Manabe C, Shigematsu T and Shimizu M 2001 Appl. Phys. Lett. 78 2928
[22] Cuniberti G, Yi J and Porto M 2002 Appl. Phys.Lett. 81 850
[23] Chou Y Y, Guo G Y, Liu L, Jayanthi C S and Wu S Y 2004 J. Appl. Phys. 96 2249
[24] Liu C P, Guo Z X, Ding J W and Yan X H 2005 PhysicaB 365 109
[25] Guo Z H, Yan X H and Cao J X 2004 Physica B 352 325
[26] Blas\'{e X, Benedict L X, Shirley E L and Louie S G 1994 Phys. Rev. Lett. 72 1878
[27] Ding J W, Yan X H, Cao J X, Tang Y and Yang Q B 2003 J. Phys.: Condens. Matter 15 L439
[28] Charlier J C, Lambin P and Ebbesen T W 1996 Phys.Rev. B 54 12 R8377
[29] Xu N, Ding J W, Chen H B and Ma M M 2009 Eur. Phys.J. B 67 71
Related articles from Frontiers Journals
[1] CHEN Ke, HE Jian-Jun, LI Ming-Yu, LaPierre R. Fabrication of GaAs Nanowires by Colloidal Lithography and Dry Etching[J]. Chin. Phys. Lett., 2012, 29(3): 076102
[2] XU Ning, WANG Bao-Lin, SUN Hou-Qian, DING Jian-Wen . Resonance Transmission in Graphene-Nanoribbon-Based Quantum Dot and Superlattice[J]. Chin. Phys. Lett., 2010, 27(10): 076102
[3] ZHAO Xue-Chuan, LIU Xiao-Ming, ZHUANG Zhuo, LIU Zhan-Li, GAO Yuan. Inhomogenous Dislocation Nucleation Based on Atom Potential in Hexagonal Noncentrosymmetric Crystal Sheet[J]. Chin. Phys. Lett., 2010, 27(1): 076102
[4] ZHANG Xi-Hua, XIONG Shi-Jie. Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin--Orbit Coupling[J]. Chin. Phys. Lett., 2008, 25(5): 076102
[5] WU Shao-Quan, SUN Wei-Li. Fano versus Kondo Resonances in a Closed Aharonov--Bohm Interferometer Coupled to Ferromagnetic Electrodes[J]. Chin. Phys. Lett., 2007, 24(4): 076102
[6] CHEN Bao-Ju, CHEN Xiong-Wen, SHI Zhen-Gang, ZHU Xi-Xiang, SONG Ke-Hui, WU Shao-Quan. Fano Interference versus Kondo Effect in Strongly Correlated T-Shaped Quantum Dots Embedded in an Aharonov--Bohm Ring[J]. Chin. Phys. Lett., 2007, 24(4): 076102
[7] CHEN Xiong-Wen, SHI Zhen-Gang, CHEN Bao-Ju, SONG Ke-Hui. Kondo Resonance versus Fano Interference in Double Quantum Dots Coupled to a Two-Lead One-Ring System[J]. Chin. Phys. Lett., 2007, 24(11): 076102
[8] CHEN Xiong-Wen, SHI Zhen-Gang, WU Shao-Quan, SONG Ke-Hui,. Tunable Kondo Effect of a Three-Terminal Transport Quantum Dot Embedded in an Aharonov--Bohm Ring[J]. Chin. Phys. Lett., 2006, 23(2): 076102
[9] CHEN Xiong-Wen, WU Shao-Quan, WANG Peng, SUN Wei-Li. Giant Persistent Current in a Mesoscopic Ring with Parallel-Coupled Double Quantum Dots[J]. Chin. Phys. Lett., 2004, 21(5): 076102
[10] GAO Ying-Fang, ZHANG Yong-Ping, LIANG Jiu-Qing. Transport of Spin-Polarized Current Through a Mesoscopic Ring with Two Leads Induced by Aharonov--Bohm and Aharonov--Casher Phases[J]. Chin. Phys. Lett., 2004, 21(11): 076102
[11] WU Shao-Quan, WANG Shun-Jin. Coherent Coupling of Double Quantum Dots Embedded in a Mesoscopic Ring[J]. Chin. Phys. Lett., 2003, 20(9): 076102
[12] DENG Wen-Ji, XU Ji-Huan, LIU Ping. Period Halving of Persistent Currents in Mesoscopic Möbius Ladders[J]. Chin. Phys. Lett., 2002, 19(7): 076102
[13] DING Hong-Sheng, CHEN Geng-Hua, ZHAO Shi-Ping, YANG Qian-Sheng. Improved Coupled Reservoir Model for Inelastic Scattering in One-Dimensional Mesoscopic Metal Rings [J]. Chin. Phys. Lett., 2002, 19(4): 076102
Viewed
Full text


Abstract