CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
The Effect of Orientation Relaxation on Polymer Melt Crystallization Studied by Monte Carlo Simulations |
WANG Mao-Xiang |
School of Science, Nanjing University of Science and Technology, Nanjing 210094 |
|
Cite this article: |
WANG Mao-Xiang 2009 Chin. Phys. Lett. 26 076103 |
|
|
Abstract We use dynamic Monte Carlo simulations to study the athermal relaxation of bulk extended chains and the isothermal crystallization in intermediately relaxed melts. It is found that the memory of chain orientations in the melt can significantly enhance the crystallization rates. The crystal orientation and lamellar thickness essentially depend on the orientational relaxation. Moreover, there is a transition of the nucleation mechanism during the isothermal crystallization from the intermediately relaxed melts. These results explain the mechanism of the self-nucleation by orientation and suggest that in flow-induced polymer crystallization, the orientational relaxation of chains decides the crystal orientation.
|
Keywords:
61.25.Hq
82.60.Nh
61.50.Ks
|
|
Received: 04 March 2009
Published: 02 July 2009
|
|
PACS: |
61.25.Hq
|
|
|
82.60.Nh
|
(Thermodynamics of nucleation)
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
|
|
|
[1] Kelton K F1991 Crystal Nucleation in Liquids andGlasses(Boston: Academic) vol 45 [2] Schultz J M 2001 Polymer Crystallization (Oxford:Oxford University) chapt 6 p 113 [3] Smith D E, Babcock H P and Chu S 1999 Science 283 1724 [4] Lyulin A B, Adolf D B and Davies G R 1999 J. Chem.Phys. 111 758 [5] Schroeder C M, Babcock H P, Shaqfeh E S G and Chu S 2003 Science 301 1515 [6] Dukovski I and Muthukumar M 2003 J. Chem. Phys. 118 6648 [7] Huo H, Meng Y F, Li H F, Jiang S C and An L J 2004 Eur. Phys. J. E 15 167 [8] Hashimoto K and Saito H 2008 Poly. J. 40 900 [9] Blundell D J, Mahendrasingam A, Martin C, Fuller W,MacKerron D H, Harvie J L, Oldman R J and Riekel C 2000 Polymer 41 7793 [10] Somani R H, Yang L, Hsiao B S, Sun T, Pogodina N V andLustiger A 2005 Macromolecules 38 1244 [11] Li L and de Jeu W H 2004 Macromolecules 375646 [12] Yang L, Somani R H, Sics I and Hsiao B S 2004 Macromolecules 37 4845 [13] Kumaraswamy G, Kornfield J A, Yeh F and Hsiao B S 2002 Macromolecules 35 1762 [14] Strobl G 2000 Eur. Phys. J. E 3 165 [15] Lavine M S, Waheed N and Rutledge G C 2003 Polymer 44 1771 [16] Ko M J, Waheed N, Lavine M S and Rutledge G C 2004 J. Chem. Phys. 121 2823 [17] Hu W B and Frenkel D 2005 Adv. Polym. Sci 1911 [18] Hu W B 1998 J. Chem. Phys. 109 3686 [19] Wang M X, Hu W B, Ma Y and Ma Y Q 2005 Macromolecules 38 2806 [20] Fan Q R and Qian R Y 1997 Macromol. Symp. 12459 [21] Khanna Y P and Reimschuessel A C 1988 J. Appl. Poly.Sci. 35 2259 [22] Vasanthan N 2003 J. Appl. Polym. Sci. 90 772 [23] Pan P, Kai W, Zhu B, Dong T and Inoue Y 2007 Macromolecules 40 6898 [24] Jabarin S A 2004 Polymer Engineering and Science 32 1341 [25] Blundell D J, MacKerron D H, Fuller W, Mahendrasingam A,Martin C, Oldman R J, Rule R J and Riekel C 1996 Polymer 37 3303 [26] Wang M X, Hu W B, Ma Y and Ma Y Q 2006 J. Chem.Phys. 124 244901 [27] Ma Y and Hu W B 2008 Soft Matter 4 540 [28] Wunderlich B1976 Macromolecular Physics (New York:Academic) vol 2 pp 70 249 [29] Kobayashi K and Nagasawa T 1970 J. Macromol. Sci.(Physics) B 4 331 [30] Frank F C and Tosi M 1961 Proc. R. Soc. London A 263 323 [31] Hobbs J K, Hill M J and Barham P J 2000 Polymer 42 2167 [32] Wunderlich B 1976 Macromolecular Physics (New York:Academic) vol 2 pp 13 and 81 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|