Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 070503    DOI: 10.1088/0256-307X/26/7/070503
GENERAL |
The chaotification of discrete Hopfield neural networks via impulsive control
LIU Na, GUAN Zhi-Hong
Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
LIU Na, GUAN Zhi-Hong 2009 Chin. Phys. Lett. 26 070503
Download: PDF(232KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The chaotification of discrete Hopfield neural networks is studied with impulsive control techniques. No matter whether the original systems are stable or not, chaotification theorems for discrete Hopfield neural networks are derived, respectively. Finally, the effectiveness of the theoretical results is illustrated by some numerical examples.
Keywords: 05.45.Gg      05.45.Pq      07.05.Mh     
Received: 03 December 2008      Published: 02 July 2009
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/070503       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/070503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Na
GUAN Zhi-Hong
[1] Zhou Q et al 2008 Chin. Phys. Lett. 25 3169
[2] Zhang X D et al 2008 Chin. Phys. Lett. 25 397
[3] Ren H P and Liu D 2002 Chin. Phys. Lett. 191054
[4] Wang X F, Chen G R and Yu X 2000 Chaos 10 771
[5] Chen G R 2003 International Conference Physics andControl (St. Petersburg, Russia 20--22 August 2003) p 468
[6] Lu J H et al 2003 IEEE Trans. Circuits Syst. I 50 198
[7] Zheng Z et al 2004 Chaos, Solitons and Fractals 20 277
[8] Suykens J A K and Vandewalle J 1993 IEEE Trans.Circuits Syst. I 40 861
[9] Yang L et al 2002 Int. J. Bifur. Chaos 12 1121
[10] Cao J D 1999 Phys. Lett. A 261 303
[11] Arik S 2005 Chaos, Solitons and Fractals 261407
[12] Singh V 2004 IEEE Trans. Neural Networks 15223
[13] Zhao H 2004 Neural Networks 17 47
[14] Park J H et al 2007 Chaos, Solitons and Fractals 33 436
[15] Yang X S and Huang Y 2006 Chaos 16 033114
[16] Yang X S and Yuan Q 2005 Neurocomputing 69232
[17] Li Q D and Yang X S 2007 Advances in NeuralNetworks (Berlin: Springer) p 96
[18] Yuan Q, Li Q D and Yang X S 2007 Chaos, Solitonsand Fractals 39 1522
[19] Bersini H and Sener P 2002 Neural Networks 151197
[20] Guan Z H et al 2002 IEEE Trans. Circuits Syst. I 49 1198
[21] Benzaid Z and Sznaier M 1994 IEEE Trans. Automat.Control 39 1064
[22] Leela S et al 1993 J. Math. Anal. Appl. 17724
[23] Wang C J and Liao H E 2001 Automatica 37 1867
[24] Li Z G et al 2001 IEEE Trans. Automat. Control 46 894
[25] Bainov D D and Simeonov P S 1989 System withImpulse Effect: Stability, Theory and Applications (New York:Halsted) chap 3 p 255
[26] Lakshmikantham V et al 1993 Stability Analysis inTerms of Two Measures (New York: World Scientific)
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 070503
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 070503
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 070503
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 070503
[5] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 070503
[6] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 070503
[7] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 070503
[8] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 070503
[9] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 070503
[10] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 070503
[11] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 070503
[12] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 070503
[13] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 070503
[14] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 070503
[15] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 070503
Viewed
Full text


Abstract