Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 070504    DOI: 10.1088/0256-307X/26/7/070504
GENERAL |
New Canards Bursting and Canards Periodic-Chaotic Sequence
YOOER Chi-Feng, XU Jian-Xue, ZHANG Xin-Hua
Institute of Nonlinear Dynamics, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
YOOER Chi-Feng, XU Jian-Xue, ZHANG Xin-Hua 2009 Chin. Phys. Lett. 26 070504
Download: PDF(290KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A trajectory following the repelling branch of an equilibrium or a periodic orbit is called a canards solution. Using a continuation method, we find a new type of canards bursting which manifests itself in an alternation between the oscillation phase following attracting the limit cycle branch and resting phase following a repelling fixed point branch in a reduced leech neuron model. Via periodic-chaotic alternating of infinite times, the number of windings within a canards bursting can approach infinity at a Gavrilov-Shilnikov homoclinic tangency bifurcation of a simple saddle limit cycle
Keywords: 05.45.Gg      05.45.Pq      07.05.Mh     
Received: 03 March 2009      Published: 02 July 2009
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/070504       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/070504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YOOER Chi-Feng
XU Jian-Xue
ZHANG Xin-Hua
[1] Coombes S and Bressloff P C 2005 Bursting: TheGenesis of Rhythm in the Nervous System (Singapore: WorldScientific)
[2] Ren W, Hu S, Zhang B, Wang F, Gong Y and Xu J 1997 Int. J. Bifurcat. Chaos 7 1867
[3] Holden A V and Fan Y 1992 Chaos Soliton. Fract. 2 221
[4] Terman D 1991 SIAM J. Appl. Math. 51 1418
[5] Kramer M A, Traub R D and Kopell N 2008 Phys. Rev.Lett. 101 068103
[6] Cymbalyuk G S, Gaudry Q, Masino M A and Calabrese R L 2002 J. Neurosci. 22 24
[7] Hill A, Lu J, Masino M, Olsen O and Calabrese R L 2001 J. Comput. Neurosci. 10 281
[8] Cymbalyuk G S and Calabrese R L 2001 Neurocomputing 38 159
[9] Rinzel J 1985 Lect. Notes Math. 1151 304
[10] Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171
[11] Yooer C, Xu J and Zhang X 2009 Chin. Phys. Lett. 26 080501
[12] Afraimovich V and Shilnikov L P 1974 Sov. Math.Dokl. 15 1761
[13] Turaev D V and Shilnikov L P 1987 Sov. Math. Dokl. 34 397
[14] Shilnikov L P, Shilnikov A L, Turaev D V and Chua L 2001 Methods of Qualitative Theory in Nonlinear Dynamics(Singapore: World Scientific) p 2
[15] Doedel E J 2007 AUTO-07P: Continuation andBifurcation Software for Ordinary Differential Equations
[16] Gavrilov N K and Shilnikov L P 1972 Math. USSR-Sb 17 467
[17] Gavrilov N K and Shilnikov L P 1973 Math. USSR-Sb 19 139
[18] Gray C M, Konig P, Engel A K and Singer W 1989 Nature 338 334
[19] Groessberg S and Somers D 1991 Neural Netw. 4453
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 070504
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 070504
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 070504
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 070504
[5] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 070504
[6] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 070504
[7] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 070504
[8] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 070504
[9] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 070504
[10] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 070504
[11] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 070504
[12] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 070504
[13] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 070504
[14] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 070504
[15] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 070504
Viewed
Full text


Abstract