Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 070502    DOI: 10.1088/0256-307X/26/7/070502
GENERAL |
Coalescence in coupled Duffing oscillators
YANG Jun-Zhong
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
YANG Jun-Zhong 2009 Chin. Phys. Lett. 26 070502
Download: PDF(667KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The forced Duffing oscillator has a pair of symmetrical attractors in a proper parameter regime. When a lot of Duffing oscillators are coupled linearly, the system tends to form clusters in which the neighboring oscillators fall onto the same attractor. When the coupling strength is strong, all of the oscillators fall onto one attractor. In this work, we investigate coalescence in the coupled forced Duffing oscillators. Some phenomena are found and explanations are presented.
Keywords: 05.45.-a      05.40.-a     
Received: 13 January 2009      Published: 02 July 2009
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/070502       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/070502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Jun-Zhong
[1] Boccaletti S, Kurths J, Osipov G, Valladares D and Zhou C2002 Phys. Rep. 366 1
[2] Shen Y, Hou Z H and Xin H W 2008 Chin. Phys. Lett. 25 3875
[3] Zhu H H and Yang J 2008 Chin. Phys. Lett. 252392
[4] Fu Z P et al 2008 Chin. Phys. Lett. 25 1220
[5] Hunding A and Engelhardt R 1995 J. Theor. Biol. 173 401
[6] Heffernan D M 1985 Phys. Lett. A 108 413
[7] Chian A C, Rempel E L and Rogers C 2006 Chaos,Solitons Fractals 29 1194
[8] Ott E 1993 Chaos in Dynamical Systems (Cambridge:Cambridge University)
[9] Castellano C, Fortunayo S and Loreto V arxiv:0710.3256v1
[10] Stauffer D N 1985 Introduction to percolation(London: Taylor and Francies)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 070502
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 070502
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 070502
[4] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 070502
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 070502
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 070502
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 070502
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 070502
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 070502
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 070502
[11] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 070502
[12] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 070502
[13] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 070502
[14] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 070502
[15] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 070502
Viewed
Full text


Abstract