Chin. Phys. Lett.  2009, Vol. 26 Issue (3): 030506    DOI: 10.1088/0256-307X/26/3/030506
GENERAL |
Initial-Value Problem of a Coupled Dispersionless System: Dynamical System Approach
Kuetche Kamgang Victor1,2, Gambo Betchewe1,2, Bouetou Bouetou Thomas1,2,3, Timoleon Crepin Kofane 2,3
1Ecole Nationale Supérieure Polytechnique, University of Yaounde I, PO Box 8390, Cameroon2Department of Physics, Faculty of Science, University of Yaounde I, PO Box 812, Cameroon3The Abdus Salam International Centre for Theoretical Physics, PO Box 586, Strada Costiera, II-34014, Trieste, Italy
Cite this article:   
Kuetche Kamgang Victor, Gambo Betchewe, Bouetou Bouetou Thomas et al  2009 Chin. Phys. Lett. 26 030506
Download: PDF(1075KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the dynamical behaviour of a coupled dispersionless system (CDS) by solving its initial-value problem following a dynamical system approach. As a result, we unearth a typical miscellaneous travelling waves including the localized and periodic ones. We also investigate the energy density of such waves and find that under some boundary conditions, the localized waves moving towards positive direction are more stable than the periodic waves which on contrary stand for the most stable travelling waves in another situation of boundary conditions.
Keywords: 05.45.Yv     
Received: 06 October 2008      Published: 19 February 2009
PACS:  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/3/030506       OR      https://cpl.iphy.ac.cn/Y2009/V26/I3/030506
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kuetche Kamgang Victor
Gambo Betchewe
Bouetou Bouetou Thomas
Timoleon Crepin Kofane
[1] Maimistov A I and Manykin 1983 Sov. Phys. JETP 58 685
[2] Hirota R and Satsuma J 1981 Phys. Lett. A 85407
[3] Hase Y and Satsuma J 1989 J. Phys. Soc. Jpn. 57 679
[4] Kodama Y 1988 Phys. Lett. A 129 223
[5] Takasaki K and Takebe T 1992 Int. J. Mod. Phys. A 7 889
[6] Krichever I M 1994 Commun. Pure Appl. Math. 47437
[7] Lebedev D and Manin Y 1979 Phys. Lett. A 74154
[8] Zakharov V E 1981 Physica D 3 193
[9] Kodama Y and Gibbons J 1990 Proc. 4th Workshop onNonlinear and Turbulent Proc. in Phys. (Singapore: WorldScientific)
[10] Krichever I M 1991 Commun. Math. Phys. 143415
[11] Konno K and Oono H 1994 J. Phys. Soc. Jpn. 63377
[12] Alagesan T and Porsezian K 1996 Chaos SolitonsFractals 7 1209
[13] Alagesan T, Chung Y and Nakke E 2004 ChaosSolitons Fractals 21 63
[14] Kotlyarov V P 1994 J. Phys. Soc. Jpn. 63 3535
[15] Fu Z, Liu S K and Liu S D 2007 Physica Scripta 76 15
[16] Pohlmeyer K 1976 Commun. Math. Phys. 46 207
[17] Lund F and Regge T 1976 Phys. Rev. D 14 1524
[18] Kakuhata H and Konno K 1996 J. Phys. Soc. Jpn. 65 1
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 030506
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 030506
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 030506
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 030506
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 030506
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 030506
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 030506
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 030506
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 030506
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 030506
[11] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 030506
[12] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 030506
[13] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 030506
[14] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 030506
[15] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 030506
Viewed
Full text


Abstract