Chin. Phys. Lett.  2009, Vol. 26 Issue (3): 030505    DOI: 10.1088/0256-307X/26/3/030505
GENERAL |
Reactive Coupling Effects on Amplitude Death of Coupled Limit-Cycle Systems
WANG Jin-Hua, LI Xiao-Wen
Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
WANG Jin-Hua, LI Xiao-Wen 2009 Chin. Phys. Lett. 26 030505
Download: PDF(471KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Amplitude death in coupled limit-cycle systems induced by the reactive coupling is studied. The presence of reactive coupling parameter changes the amplitude death process of the system, and increases the critical coupling strength for the emergence of amplitude death. When the systems are in the state of complete or partial amplitude death, increasing the reactive coupling will increase the number of partial synchronization groups, implying the increase of disorder of the system. Increasing the reactive coupling makes the elimination of the amplitude death of the systems harder.
Keywords: 05.\      45.\      Xt      05.\      45.\     
Received: 14 November 2008      Published: 19 February 2009
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/3/030505       OR      https://cpl.iphy.ac.cn/Y2009/V26/I3/030505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jin-Hua
LI Xiao-Wen
[1] Bonilla L L and Acebron J A 2005 Rev. Mod. Phys. 71 137
[2] Bar-Eli Z 1985 Physica D 14 242
[3] Ermentrout G B 1990 Physica D 41 219
[4] Matthews P C and Strogatz S H 1990 Phys. Rev. Lett. 65 1701
[5] Matthews P C and Strogatz S H 1991 Physica D 52 293
[6] Aronson D G,Ermentrout G B and Koppel N 1990 PhysicaD 41 403
[7] Ramana D V,Sen A and Johnston G L 1998 Phys. Rev.Lett. 80 5109
[8] Yamaguchi Y and Shiimizu H 1984 Physica D 11212
[9] Cross M C and Rogers J L 2004 Phys. Rev. Lett. 93 224101
[10] Cross M C and Rogers J L 2006 Phys. Rev. E 73036205
[11] Yang J Z 2007 Phys. Rev. E 76 016204
[12] Zheng Z G 2001 Chin. Phys. 10 0703
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 030505
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 030505
[3] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 030505
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 030505
[5] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 030505
[6] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 030505
[7] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 030505
[8] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 030505
[9] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 030505
[10] GUO Xiao-Yong, *, LI Jun-Min . Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control[J]. Chin. Phys. Lett., 2011, 28(12): 030505
[11] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 030505
[12] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 030505
[13] LI Mei-Sheng**, ZHANG Hong-Hui, ZHAO Yong, SHI Xia . Synchronization of Coupled Neurons Controlled by a Pacemaker[J]. Chin. Phys. Lett., 2011, 28(1): 030505
[14] SUN Zhi-Qiang, XIE Ping, LI Wei, WANG Peng-Ye. Spiking Regularity and Coherence in Complex Hodgkin-Huxley Neuron Networks[J]. Chin. Phys. Lett., 2010, 27(8): 030505
[15] QI Jian-Qing, WANG Lei, DAI Xi. Antiferromagnetism of Repulsively Interacting Fermions in a Harmonic Trap[J]. Chin. Phys. Lett., 2010, 27(8): 030505
Viewed
Full text


Abstract