Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3296-3299    DOI:
Original Articles |
Funnel-Shaped Arrays of Metal Nano-Cylinders for Nano-Focusing
ZHOU Xiu-Li1, FU Yong-Qi2, WANG Shi-Yong1, PENG An-Jin1, CAI Zhong-Heng1
1School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 6100542State Key Laboratory of Optical Technologies for Microfabrication, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209
Cite this article:   
ZHOU Xiu-Li, FU Yong-Qi, WANG Shi-Yong et al  2008 Chin. Phys. Lett. 25 3296-3299
Download: PDF(1141KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We analyse funnel-shaped arrays of metal nanocylinders that can be potentially used as waveguides for nano-focusing of light. The proposed structures consist of Ag nanocylinders with gradually changed radii and discrete spacing arranged like side-view funnels with different angles. Finite-difference and time-domain simulations demonstrate that the proposed structures with different spacings and funnel angles have versatile light propagation characteristics. These structures can focus the incident Gaussian light beam (200nm at its full width at half maximum) into beam sizes of 10nm, 15nm, and 20nm, respectively, which corresponds to the transmission efficiencies of 38%, 40%, and 80%.
Keywords: 42.79.Dj     
Received: 11 February 2008      Published: 29 August 2008
PACS:  42.79.Dj (Gratings)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03296
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Xiu-Li
FU Yong-Qi
WANG Shi-Yong
PENG An-Jin
CAI Zhong-Heng
[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Betzig E and Chichester R J 1993 Science 2621422
[3] Ebbesen T W et al 1998 Nature 391 667
[4] Wang B, Wang G P 2004 Appl. Phys. Lett. 853599
[5] Haes A J and Van Duyne R P 2004 Expert Rev. Mol.Diagn 4 527
[6] Betzig E and Trautman J K 1992 Science 257 189
[7] Mirkin C A 1999 Science 286 2095
[8] Koel B E and Requicha A A G 2003 Nat. Mater. 2229
[9] Stephen K G and Teobald K 2003 Phys. Rev. B 68045415
[10] Fu Y et al 2007 Appl. Phys. Lett. 91 061124
[11] Fu Y, Zhou W and Lennie L E N 2008 J. Opt. Soc. Am.A 25 238
[12] Fu Y, Zhou W, Lennie L E N, Du C and Luo X 2007 Appl. Phys. B 86 155
[13] Fu Y, Zhou W, Lennie L E N, Du C and Luo X 2007 Appl. Phys. B 86 61
[14] Li K, Li X, Mark I S and David J B 2005 Phys. Rev.B 71 115409
[15] Krenn J R et al 1999 Phys. Rev. Lett. 82 2590
[16] Weeber J C, Krenn J R, Dereux A, Lamprecht B, Lacroute Yand Goudonnet J P 2001 Phys. Rev. B 64 045411
Related articles from Frontiers Journals
[1] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 3296-3299
[2] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, WANG Bao-Jun, BIAN Jing, MA Li, YU Wen-Ke, LOU Cai-Yun . Influence Factors of an All-Optical Recovered Clock from Two-Section DFB Lasers[J]. Chin. Phys. Lett., 2011, 28(9): 3296-3299
[3] LU Yun-Qing, LI Pei-Li, ZHENG Jia-Jin. The Axial Spatial Evolution of Optical Field near the Talbot Plane of a Grating[J]. Chin. Phys. Lett., 2010, 27(9): 3296-3299
[4] WU Wen-Xuan, LUO Yan-Hua, CHENG Xu-Sheng, TIAN Xiu-Jie, QIU Wei-Wei, REN Xi-Feng, ZHU Bing, ZHANG Qi-Jin,. Effect of Zeroth-Order beam on Azobenzene Polymer Surface Relief Gratings Fabricated by Phase-Mask Method[J]. Chin. Phys. Lett., 2010, 27(9): 3296-3299
[5] KANG Xiu-Bao, TAN Wei, WANG Zhan-Shan, WANG Zhi-Guo, CHEN Hong. High Efficiency One-Way Transmission by One-Dimensional Photonic Crystals with Gratings on One Side[J]. Chin. Phys. Lett., 2010, 27(7): 3296-3299
[6] HU Xu-Hui, GONG Ke, SUN Tian-Yu, WU Dong-Min. Polarization-Independent Guided-Mode Resonance Filters under Oblique Incidence[J]. Chin. Phys. Lett., 2010, 27(7): 3296-3299
[7] WU Bao-Jian, LU Xin, QIU Kun. Magneto-Optic Fiber Gratings Useful for Dynamic Dispersion Management and Tunable Comb Filtering[J]. Chin. Phys. Lett., 2010, 27(6): 3296-3299
[8] LI Li-Sha, FENG Xuan-Qi. Synthesis of Fiber Bragg Gratings with Right-Angled Triangular Spectrum[J]. Chin. Phys. Lett., 2010, 27(5): 3296-3299
[9] WANG Ying, LI Yu-Hua, LU Pei-Xiang. Infrared Femtosecond Laser Direct-Writing Digital Volume Gratings in Fused Silica[J]. Chin. Phys. Lett., 2010, 27(4): 3296-3299
[10] ZHAO Hua-Jun, YUAN Dai-Rong, WANG Pei, LU Yong-Hua, MING Hai. Design of a Fused-Silica Subwavelength Polarizing Beam Splitter Grating Based on the Modal Method[J]. Chin. Phys. Lett., 2010, 27(2): 3296-3299
[11] HAN Wei, HUANG Wan-Qing, LI Ke-Yu, WANG Fang, FENG Bin, JIA Huai-Ting, LI Fu-Quan, XIANG Yong, JING Feng, ZHENG Wan-Guo . Stimulated Brillouin Scattering Damage of Large-Aperture Fused Silica Grating[J]. Chin. Phys. Lett., 2010, 27(12): 3296-3299
[12] GUO Wan-Hong, LIU Jun-Qi**, LU Quan-Yong, ZHANG Wei, JIANG Yu-Chao, LI Lu, WANG Li-Jun, LIU Feng-Qi, WANG Zhan-Guo . Surface Emitting Distributed Feedback Quantum Cascade Laser around 8.3 μm[J]. Chin. Phys. Lett., 2010, 27(11): 3296-3299
[13] KANG Guo-Guo, TAN Qiao-Feng, JIN Guo-Fan. Optimal Design of an Achromatic Angle-Insensitive Phase Retarder Used in MWIR Imaging Polarimetry[J]. Chin. Phys. Lett., 2009, 26(7): 3296-3299
[14] ZHANG De-Long, YANG Qing-Zhong, E. Y. B. Pun. Proposals for Fabrication of Long-Period Grating in LiNbO3 Strip Waveguides[J]. Chin. Phys. Lett., 2008, 25(8): 3296-3299
[15] CHEN Jun-Xue, WANG Pei, WANG Xiao-Lei, LU Yong-Hua, ZHENG Rong-Sheng, MING Hai. Analytical Investigation of Transmission Properties of Metallic Gratings[J]. Chin. Phys. Lett., 2008, 25(12): 3296-3299
Viewed
Full text


Abstract