Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3264-3267    DOI:
Original Articles |
Thermodynamics of Phase Transitions of a Kerr Nonlinear Blackbody
CHENG Ze
Department of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
CHENG Ze 2008 Chin. Phys. Lett. 25 3264-3267
Download: PDF(232KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the thermodynamics of phase transitions of a blackbody whose interior is filled by a Kerr nonlinear crystal. There is a transition temperature Tc, above which the Kerr nonlinear blackbody is in the normal thermal radiation state, and below which it is in the squeezed thermal radiation state. At Tc, the Gibbs free energy of the two phases is continuous but the entropy density of the two phases is discontinuous. Hence, there is a jump in the entropy density and this leads to a latent heat density. The photon system undergoes a first-order phase transition from the normal to the squeezed thermal radiation state.

Keywords: 42.65.Hw      71.36.+c      42.70.Qs     
Received: 13 May 2008      Published: 29 August 2008
PACS:  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  42.70.Qs (Photonic bandgap materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03264
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Ze
[1]Onnes H K 1913 Commun. Phys. Lab. Univ. Leiden, Suppl.Nos 122 \& 124
[2]Kapitza P L 1932 Nature 141 74
[3] Anderson M H, Ensher J R, Matthews M R, Wieman C E andCornell E A 1995 Science 269 198
[4]Greiner M et al 2002 Nature 415 39
[5]Cheng Ze 2001 Phys. Lett. A 291 4
[6]Cheng Ze 2002 J. Opt. Soc. Am. B 19 1692
[7]Cheng Ze 2004 Phys. Lett. A 331 170
[8]Cheng Ze 2005 Phys. Rev. A 71 033808
[9]Landau L D and Lifshitz E M 1980 Statistical PhysicsPart 1 3rd edn (Oxford: Reed Educational) p 183
[10]Hayes W and Loudon R 1978 Scattering of Light byCrystals (New York: Wiley)
[11]Cooper L N 1956 Phys. Rev. 104 1189
[12]Bardeen J et al 1957 Phys. Rev. 108 1175
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 3264-3267
[2] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 3264-3267
[3] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 3264-3267
[4] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 3264-3267
[5] LI Heng,SHENG Chuan-Xiang**,CHEN Qian. Optical Bistability in Ag/Dielectric Multilayers[J]. Chin. Phys. Lett., 2012, 29(5): 3264-3267
[6] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 3264-3267
[7] WU Hong, JIANG Li-Yong, JIA Wei, LI Xiang-Yin. Polarization Beam Splitter Based on an Annular Photonic Crystal of Negative Refraction[J]. Chin. Phys. Lett., 2012, 29(3): 3264-3267
[8] DING Dong-Sheng, ZHOU Zhi-Yuan, SHI Bao-Sen, ZOU Xu-Bo, GUO Guang-Can. Two-Photon Atomic Coherence Effect of Transition 5S1/2–5P3/2–4D5/2(4D3/2) of 85Rb atoms[J]. Chin. Phys. Lett., 2012, 29(2): 3264-3267
[9] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 3264-3267
[10] CHEN Xi-Yao**, LIN Gui-Min, LI Jun-Jun, XU Xiao-Fu, JIANG Jun-Zhen, QIANG Ze-Xuan, QIU Yi-Shen, LI Hui. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal[J]. Chin. Phys. Lett., 2012, 29(1): 3264-3267
[11] ZHANG Xuan, CHEN Shu-Wen, LIAO Qing-Hua**, YU Tian-Bao, LIU Nian-Hua, HUANG Yong-Zhen . Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity[J]. Chin. Phys. Lett., 2011, 28(8): 3264-3267
[12] QIAO Yao-Jun**, LIU Xue-Jun, JI Yue-Feng . Fiber Nonlinearity Post-Compensation by Optical Phase Conjugation for 40Gb/s CO-OFDM Systems[J]. Chin. Phys. Lett., 2011, 28(6): 3264-3267
[13] FANG Yi-Jiao, CHEN Zhuo**, WANG Zhen-Lin . Slow-Light Propagation in a Tapered Dielectric Periodic Waveguide over Broad Frequency Range[J]. Chin. Phys. Lett., 2011, 28(5): 3264-3267
[14] LIU Hong-Wei**, KAN Qiang, WANG Chun-Xia, HU Hai-Yang, XU Xing-Sheng, CHEN Hong-Da . Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab[J]. Chin. Phys. Lett., 2011, 28(5): 3264-3267
[15] LI Jing, DENG Ying, WANG Jian-Jun, LI Ming-Zhong, XU Dang-Peng, LIN Hong-Huan, ZHU Na, ZHANG Rui, JING Feng** . Suppression Impact of Group-Velocity Dispersion on the Cell of Pulse Cleaning[J]. Chin. Phys. Lett., 2011, 28(4): 3264-3267
Viewed
Full text


Abstract