Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3260-3263    DOI:
Original Articles |
Achievement of Narrow-Band CARS Signal by Manipulating Broad-band Laser Spectrum
ZHANG Shi-An, WANG Zu-Geng, SUN Zhen-Rong
State Key Laboratory of Precision Spectroscopy, and Department of Physics, East China Normal University, Shanghai 200062
Cite this article:   
ZHANG Shi-An, WANG Zu-Geng, SUN Zhen-Rong 2008 Chin. Phys. Lett. 25 3260-3263
Download: PDF(347KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We theoretically demonstrate the achievement of narrow-band coherent anti-Stokes Raman scattering (CARS) signal by manipulating broad-band probe spectrum. The narrowing of the CARS signal depends on the spectrum bandwidth of the probe beam, and thus high-resolution CARS signal for a complicated quantum system can be obtained by the simple spectrum manipulation. Furthermore, the energy-level diagram for the complicated quantum system can also be labelled by measuring the CARS signal at a given frequency.

Keywords: 42.65.Dr      32.80.Qk     
Received: 12 June 2008      Published: 29 August 2008
PACS:  42.65.Dr (Stimulated Raman scattering; CARS)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03260
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Shi-An
WANG Zu-Geng
SUN Zhen-Rong
[1] Meshulach D and Silberberg Y 1998 Nature 396239
[2] Dudowich N, Oron D and Silverberg Y 2002 Nature 418 512
[3] Yee D S, Yee K J, Hohng S C and Kim D S 2000 Phys.Rev. Lett. 84 3474
[4] Meshulach D and Silberberg Y 1999 Phys. Rev. A 60 1287
[5] Warren W S, Rabitz H and Dahleh M 1993 Science 259 1581
[6] Dayan B, Asher A P, Friesem A and Silberberg Y 2004 Phys. Rev. Lett. 93 023005-1
[7] Weiner A M, Oudin S, Leaird D E and Reitze D H 1993 J. Opt. Soc. Am. A 10 1112
[8] Weiner A M, Leaird D E, Patel J S and Wullert J R 1992 J. Quantum. Electron. 28 908
[9] Hillegas C W, Tull J X, Goswami D, Strickland D and WarranW S 1994 Opt. Lett. 19 737
[10] Bardeen C J, Yakovlev V V, Wilson K R, Carpenter S D,Weber P M and Warren W S 1997 Chem. Phys. Lett. 280 151
[11] Barteels R, Backus S, Zeek E, Misoguti L and Kapteyn H C2000 Nature 406 164
[12] Assion A, Baumert T, Bergt M, Brixner T, Kiefer B andGerber G 1998 Science 282 919
[13] Weinacht T C, White J L and Bucksbaum P H 1999 J.Phys. Chem. A 103 10166
[14] Hornung T, Meier R, de Vivie-Riedle R and Motzkus M 2001 Chem. Phys. 267 261
[15] Song J J, Eesley G L and Levenson M D 1976 Appl.Phys. Lett. 29 567
[16] Oron D, Dudovich N, Yelin D and Silberberg Y 2002 Phys. Rev. A 65 043408
Related articles from Frontiers Journals
[1] LIU Yang, WU Jing-Hui, SHI Bao-Sen, GUO Guang-Can. Realization of a Two-Dimensional Magneto-optical Trap with a High Optical Depth[J]. Chin. Phys. Lett., 2012, 29(2): 3260-3263
[2] WANG Yan-Bin**, HOU Jing**, CHEN Zi-Lun, CHEN Sheng-Ping, SONG Rui, LI Ying, YANG Wei-Qiang, LU Qi-Sheng . High-Efficiency Supercontinuum Generation at 12.8W in an All-Fiber Device[J]. Chin. Phys. Lett., 2011, 28(7): 3260-3263
[3] CHEN Xiao-Dong, , MAO Qing-He**, SUN Qing, ZHAO Jia-Sheng, LI Pan, FENG Su-Juan. An All-Fiber Gas Raman Light Source Based on a Hydrogen-Filled Hollow-Core Photonic Crystal Fiber Pumped with a Q-Switched Fiber Laser[J]. Chin. Phys. Lett., 2011, 28(7): 3260-3263
[4] HE Ping, FAN Rong-Wei, XIA Yuan-Qin, YU Xin, YAO Yong, CHEN De-Ying, ** . Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature[J]. Chin. Phys. Lett., 2011, 28(4): 3260-3263
[5] LIU Xing, LIU Wei, YIN Jun, QU Jun-Le, LIN Zi-Yang, NIU Han-Ben** . Optimization of Supercontinuum Sources for Ultra-Broadband T-CARS Spectroscopy[J]. Chin. Phys. Lett., 2011, 28(3): 3260-3263
[6] JIA Guang-Rui, **, ZHANG Xian-Zhou, LIU Yu-Fang, YU Kun, ZHAO Yue-Jin . Calculation of Multiphoton Transition in Li Atoms via Chirped Microwave Pulse[J]. Chin. Phys. Lett., 2011, 28(10): 3260-3263
[7] ZHANG Xue-Hua, HU Xiang-Ming, KONG Ling-Feng, ZHANG Xiu. High-Frequency Einstein-Podolsky-Rosen Entanglement via Atomic Memory Effects in Four-Wave Mixing[J]. Chin. Phys. Lett., 2010, 27(9): 3260-3263
[8] XIE Xiao-Peng, ZHUANG Wei, CHEN Jing-Biao. Adiabatic Passage Based on the Calcium Active Optical Clock[J]. Chin. Phys. Lett., 2010, 27(7): 3260-3263
[9] ZHU Yu-Zhu, HU Xiang-Ming, WANG Fei, LI Jing-Yan. Enhancement of Continuous Variable Entanglement in Four-Wave Mixing due to Atomic Memory Effects[J]. Chin. Phys. Lett., 2010, 27(4): 3260-3263
[10] LI Yuan-Yuan, , LI-Li, BAI Jin-Tao, LI Chang-Biao, ZHANG Yan-Peng, HOU Xun,. Dressed Four-Wave Mixing Spectroscopy Modified by Polarization Interference and Atom-Wall Collision in Micrometric Thin Cells[J]. Chin. Phys. Lett., 2010, 27(4): 3260-3263
[11] GUO Yuan, RUAN Shuang-Chen, YAN Pei-Guang, LI Irene-Ling, YU Yong-Qin. Supercontinuum Gneneration and Modes Analysis in Secondary Cores of a Hollow-Core Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2010, 27(4): 3260-3263
[12] ZHOU Zi-Chao, WEI Rong**, SHI Chun-Yan, WANG Yu-Zhu**. Observation of Modulation Transfer Spectroscopy in the Deep Modulation Regime[J]. Chin. Phys. Lett., 2010, 27(12): 3260-3263
[13] LOU Jun, LI Shu-Min,. Positron-Impact Ionization of Atomic Hydrogen in a Bichromatic Laser Field in the Second Born Approximation[J]. Chin. Phys. Lett., 2010, 27(10): 3260-3263
[14] DU Zhi-Jing, ZHANG Shou-Gang, WU Chang-Jiang, GUAN Yong, ZHAO Wen-Yu, CHANG Hong. Observation of Autler-Townes Effect in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2010, 27(10): 3260-3263
[15] TAN Hua-Tang, DENG Wen-Wu. Entanglement Enhancement Via Collective CPT in Bichromatically Driven Three-Level Atoms[J]. Chin. Phys. Lett., 2009, 26(9): 3260-3263
Viewed
Full text


Abstract