Chin. Phys. Lett.  2007, Vol. 24 Issue (4): 894-897    DOI:
Original Articles |
Marchenko Equation for the Derivative Nonlinear Schrodinger Equation
HUANG Nian-Ning
Department of Physics, Wuhan University, Wuhan 430072
Cite this article:   
HUANG Nian-Ning 2007 Chin. Phys. Lett. 24 894-897
Download: PDF(212KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A simple derivation of the Marchenko equation is given for the derivative nonlinear Schrodinger equation. The kernel of the Marchenko equation is demanded to satisfy the conditions given by the compatibility equations. The soliton solutions to the Marchenko equation are verified. The derivation is not concerned with the revisions of Kaup and Newell.
Keywords: 05.45.Yv      52.35.Sb      42.81.Dp     
Received: 29 November 2006      Published: 26 March 2007
PACS:  05.45.Yv (Solitons)  
  52.35.Sb (Solitons; BGK modes)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I4/0894
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Nian-Ning
[1] Kaup D J and Newell A C 1978 J. Math. Phys. 19 798
[2] Kawata T and Inoue H 1978 J. Phys. Soc. Jpn. 44 1968
[3] Mj\o lhus E 1989 Phys. Scripta 40 277
[4] Mj\o lhus E and Hada T 1997 Nonlinear Waves and Chaos inSpace Plasmas ed Hada T and Matsumoto H (Tokyo: Terrapub) p 121
[5] Ruderman M S 2002 J. Plasma Phys. 67 271
[6] Chen X J and Lam W K 2004 Phys. Rev. E 69 066604
[7] Cai H and Huang N N 2005 Physica D 202 60
[8] Chen X J, Yang J and Lam W K 2006 J. Phys. A: Math. Gen. 39 3263
[9] Chen X J, Hou L J and Lam W K 2005 Chin. Phys. Lett. 22 830
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 894-897
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 894-897
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 894-897
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 894-897
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 894-897
[6] Hafeez Ur Rehman. Electrostatic Dust Acoustic Solitons in Pair-Ion-Electron Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 894-897
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 894-897
[8] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 894-897
[9] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 894-897
[10] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 894-897
[11] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 894-897
[12] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 894-897
[13] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 894-897
[14] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 894-897
[15] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 894-897
Viewed
Full text


Abstract