Original Articles |
|
|
|
|
Anomalous Heat Conduction in One-Dimensional Dimerized Lattices |
LI Xin-Xia 1,2;TANG Yi2 |
1Department of Mathematics and Physics, Nanhua University, Hengyang 4210012Institute of Modern Physics, Xiangtan University, Xiangtan 411105 |
|
Cite this article: |
LI Xin-Xia, TANG Yi 2007 Chin. Phys. Lett. 24 898-901 |
|
|
Abstract The process of heat conduction in one-dimensional dimerized systems is studied by means of numerical simulation. Taking into account the difference between the strong bond and the weak one of the systems, our calculation indicates that heat conduction in the lattice is anomalous. For the typical parameter related to a real physical system, the divergent exponent is shown to be in agreement with that predicted by the mode-coupling theory. Moreover, our study shows that the homogeneous chain is the best thermal conductor.
|
Keywords:
05.70.Ln
44.10.+i
66.70.+f
05.60.-k
|
|
Received: 30 October 2006
Published: 26 March 2007
|
|
|
|
|
|
[1] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1 [2] Hu B, Li B and Zhao H 1998 Phys. Rev. E 57 2992 [3] Hu B, Li B and Zhao H 2000 Phys. Rev. E 61 3828 [4] Narayan O and Ramaswamy S 2002 Phys. Rev. Lett. 89200601 [5] Lepri S, Livi R and Politi A 1998 Europhys. Lett. 43271 Lepri S, Livi R and Politi A 2003 Phys. Rev. E 68 067102 [6] Zhu H J, Zhang Y and Zhao H 2004 Chin. Phys. Lett. 21 2219 [7] Wang J S and Li B 2004 Phys. Rev. Lett. 92 074302 [8] Li B, Wang L and Hu B 2002 Phys. Rev. Lett. 88 223901 [9] Wang J S and Li B 2004 Phys. Rev. E 70 021204 [10] Terraneo M, Peyrard M and Gasati G 2002 Phys. Rev.Lett. 88 094302 [11] Maruyama S 2002 Physica B 323 193 [12] Rieder Z, Lebowitz J and Lieb E 1967 J. Math. Phys 81073 [13] Gillan M J and Holloway R W 1985 J. Phys. C 18 5705 [14] Savin A V and Gendelman O V 2003 Phys. Rev. E 67 041205 [15] Gasati G, Ford J, Vivaldi F and Viddcher W M 1984 Phys.Rev. Lett. 52 1861 [16] Prosen T and Robnik M 1992 J. Phys. A 25 3449 [17] Giardina G, Livi R, Politi A and Vassalli M 2000 Phys.Rev. Lett. 84 2144 [18] Peierls R E 1955 Quantum Theory of Solid (Oxford:Oxford University Press) [19] Hase M, Terasaki I and Uchinokura K 1993 Phys. Rev.Lett. 70 3651 [20] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev.Lett. 42 1698 [21] Nos\`{e S 1984 J. Chem. Phys 81 511 Hoover W G 1985 Phys. Rev. A 31 1695 [22] Li B, Zhao H and Hu B 2001 Phys. Rev. Lett. 86 63 [23] Kubo R, Toda M and Hashitsume N 1991 StatisticalPhysics II: Springer Series in Solid State Sciences (Berlin:Springer) vol 31 [24] Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|