Chin. Phys. Lett.  2005, Vol. 22 Issue (9): 2316-2319    DOI:
Original Articles |
Fractional Fourier Transform of Cantor Sets
LIAO Tian-He;GAO Qiong
Department of Physics, Information Engineering University, Zhengzhou 450001
Cite this article:   
LIAO Tian-He, GAO Qiong 2005 Chin. Phys. Lett. 22 2316-2319
Download: PDF(271KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new kind of multifractal is constructed by fractional Fourier transform of Cantor sets. The wavelet transform modulus maxima method is applied to calculate the singularity spectrum under an operational definition of multifractal. In particular, an analysing procedure to determine the spectrum is suggested for practice. Nonanalyticities of singularity spectra or phase transitions are discovered, which are interpreted as some indications on the range of Boltzmann temperature q, on which the scaling relation of partition function holds.
Keywords: 47.53.+n      02.30.Nw     
Published: 01 September 2005
PACS:  47.53.+n (Fractals in fluid dynamics)  
  02.30.Nw (Fourier analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I9/02316
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIAO Tian-He
GAO Qiong
Related articles from Frontiers Journals
[1] YAN Yue, WU Biao**. Local Field Distributions in Systems with Dipolar Interaction[J]. Chin. Phys. Lett., 2012, 29(1): 2316-2319
[2] ZANG Wei-Ping, CHENG Hua, TIAN Jian-Guo. A Novel Three-Dimensional Wide-Angle Beam Propagation Method Based on Split-Step Fast Fourier Transform[J]. Chin. Phys. Lett., 2009, 26(2): 2316-2319
[3] KOU Jian-Long, LU Hang-Jun, WU Feng-Min, XU You-Sheng. Sprout Branching of Tumour Capillary Network Growth: Fractal Dimension and Multifractal Structure[J]. Chin. Phys. Lett., 2008, 25(5): 2316-2319
[4] YUN Mei-Juan, YU Bo-Ming, Xu Peng, CAI Jian-Chao. Fractal Analysis of Power-Law Fluid in a Single Capillary[J]. Chin. Phys. Lett., 2008, 25(2): 2316-2319
[5] KANG Yan-Mei, JIANG Yao-Lin. Long-Time Dynamic Response and Stochastic Resonance of Subdiffusive Overdamped Bistable Fractional Fokker--Planck Systems[J]. Chin. Phys. Lett., 2008, 25(10): 2316-2319
[6] CHEN Wen. Lévy Stable Distribution and [0,2] Power Law Dependence of Acoustic Absorption on Frequency in Various Lossy Media[J]. Chin. Phys. Lett., 2005, 22(10): 2316-2319
[7] BA Xin-Wu, ZHANG Shu-Wen, WANG Hai-Jun, WANG Su-Juan, HAN Ying-Hui. Fractal Dimension of Randomly Branched Polymers in a Good Solvent[J]. Chin. Phys. Lett., 2002, 19(8): 2316-2319
[8] GUO Li-Xin, WU Zhen-Sen. Moment Method with Wavelet Expansions for Fractal Rough Surface Scattering[J]. Chin. Phys. Lett., 2002, 19(11): 2316-2319
[9] LIU Wen-Xian, TENG Shu-Yun, ZHANG Ning-Yu, LIU De-Li, CHENG Chuan-Fu. Computational Generation and the Simulation of the Light Scattering of Self-Affine Fractal Random Surface[J]. Chin. Phys. Lett., 2001, 18(2): 2316-2319
[10] XIE Qian, CHEN Nanxian. Determination of Hydrogen Activation Energy Spectrum in Amorphous Solids from Internal Frictions[J]. Chin. Phys. Lett., 1995, 12(9): 2316-2319
[11] WU Feng, TANG Xinlu, YANG Yuegui, WANG Xiaohong. Relationship Between the Formation of Clusters in Electrorheological Fluids and Their Fractal Dimension [J]. Chin. Phys. Lett., 1995, 12(8): 2316-2319
Viewed
Full text


Abstract