Chin. Phys. Lett.  2001, Vol. 18 Issue (9): 1167-1169    DOI:
Original Articles |
Fermions Entropy of Vaidya-Bonner Black Hole
GAO Chang-Jun1,2;SHEN You-Gen1,2,3
1Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 2National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 3Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
GAO Chang-Jun, SHEN You-Gen 2001 Chin. Phys. Lett. 18 1167-1169
Download: PDF(183KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the membrane model which is based on brick-wall model, the authors calculated the free energy and entropy of the Vaidya-Bonner black hole due to fermions fields. The result shows that the entropy of the Vaidya-Bonner black hole is exactly proportional to the area of its event horizon. The relationship between entropy and event horizon in such non-static case is just the same as that in the static or stationary case.
Keywords: 04.70.Dy      04.62.+v      04.60.+n     
Published: 01 September 2001
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.62.+v (Quantum fields in curved spacetime)  
  04.60.+n  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I9/01167
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Chang-Jun
SHEN You-Gen
Related articles from Frontiers Journals
[1] CHEN Bin,NING Bo**,ZHANG Jia-Ju. Boundary Conditions for NHEK through Effective Action Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1167-1169
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 1167-1169
[3] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 1167-1169
[4] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 1167-1169
[5] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 1167-1169
[6] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 1167-1169
[7] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 1167-1169
[8] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 1167-1169
[9] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 1167-1169
[10] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 1167-1169
[11] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 1167-1169
[12] LIU Chang-Qing. Absorption Cross Section and Decay Rate of Stationary Axisymmetric Einstein-Maxwell Dilaton Axion Black Hole[J]. Chin. Phys. Lett., 2010, 27(4): 1167-1169
[13] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 1167-1169
[14] JIANG Ke-Xia, KE San-Min, PENG Dan-Tao, FENG Jun. Hawking radiation as tunneling and the unified first law of thermodynamics at the apparent horizon of the FRW universe[J]. Chin. Phys. Lett., 2009, 26(7): 1167-1169
[15] M. Akbar, Asghar Qadir. Gauss-Bonnet and Lovelock Gravities and the Generalized Second Law of Thermodynamics[J]. Chin. Phys. Lett., 2009, 26(6): 1167-1169
Viewed
Full text


Abstract