Chin. Phys. Lett.  2001, Vol. 18 Issue (9): 1163-1166    DOI:
Original Articles |
Casimir Energies on a Twisted Two-Torus
CHENG Hong-Bo1;LI Xin-Zhou2
1Department of Physics, Shanghai Teachers University, Shanghai 200234 2Institute for Theoretical Physics, East China University of Science and Technology, Shanghai 200237
Cite this article:   
CHENG Hong-Bo, LI Xin-Zhou 2001 Chin. Phys. Lett. 18 1163-1166
Download: PDF(277KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider a twisted massless multiplet on a two-torus, one side with the normal boundary and the other with twisted boundary. The Casimir energy is calculated and regularized by means of the Epstein-Hurwitz type zeta function introduced by Elizalde. The resulted dimensions of spacetime for the twisted case may be integers. The results are compared with those of untwisted case. Since twisted Casimir energy is lower than untwisted energy, the untwisted cases may change into the twisted state in the spacetime.
Keywords: 04.20.Jb      03.65.Ge     
Published: 01 September 2001
PACS:  04.20.Jb (Exact solutions)  
  04.62  
  +v  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I9/01163
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Hong-Bo
LI Xin-Zhou
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 1163-1166
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 1163-1166
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1163-1166
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1163-1166
[5] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 1163-1166
[6] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 1163-1166
[7] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1163-1166
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 1163-1166
[9] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1163-1166
[10] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 1163-1166
[11] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 1163-1166
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 1163-1166
[13] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 1163-1166
[14] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 1163-1166
[15] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 1163-1166
Viewed
Full text


Abstract