Chin. Phys. Lett.  2001, Vol. 18 Issue (9): 1170-1172    DOI:
Original Articles |
Dynamical Temperature of a One-Dimensional Many-Body System in the Lennard-Jones Model
LIU Jue-Ping;YUAN Bao-Lun
Department of Physics, Wuhan University, Wuhan 430072
Cite this article:   
LIU Jue-Ping, YUAN Bao-Lun 2001 Chin. Phys. Lett. 18 1170-1172
Download: PDF(221KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new way to derive the formula of the dynamical temperature by
using the invariance of the Liouville measure and the ergodicity
hypothesis is presented, based on the invariance of the functional under the transformation of the measure. The obtained dynamical temperature is intrinsic to the underlying dynamics of the system. A molecular dynamical simulation of a one-dimensional many-body system in the Lennard-Jones model has been performed. The temperature calculated from the Hamiltonian for the stationary state of the system coincides with that determined with the thermodynamical method.
Keywords: 05.20.Gg      02.40.Vh      05.70.Ln     
Published: 01 September 2001
PACS:  05.20.Gg (Classical ensemble theory)  
  02.40.Vh (Global analysis and analysis on manifolds)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I9/01170
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Jue-Ping
YUAN Bao-Lun
Related articles from Frontiers Journals
[1] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 1170-1172
[2] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 1170-1172
[3] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 1170-1172
[4] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 1170-1172
[5] WU An-Cai . Percolation of Mobile Individuals on Weighted Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(11): 1170-1172
[6] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 1170-1172
[7] HUA Da-Yin, WANG Lie-Yan. Phase Transition of the Pair Contact Process Model in a Fragmented Network[J]. Chin. Phys. Lett., 2010, 27(9): 1170-1172
[8] ZHANG Yan-Ping, HE Ji-Zhou. Thermodynamic Performance Characteristics of an Irreversible Micro-Brownian Heat Engine Driven by Temperature Difference[J]. Chin. Phys. Lett., 2010, 27(9): 1170-1172
[9] Ahmet Y�, ld�, r�, m, Syed Tauseef Mohyud-Din**. Analytical Approach to Space- and Time-Fractional Burgers Equations[J]. Chin. Phys. Lett., 2010, 27(9): 1170-1172
[10] PAN Xin, DENG Gui-Shi, LIU Jian-Guo,. Information Filtering via Improved Similarity Definition[J]. Chin. Phys. Lett., 2010, 27(6): 1170-1172
[11] WANG Xin-Xin, BAO Jing-Dong. A Scheme for Information Erasure in a Double-Well Potential[J]. Chin. Phys. Lett., 2010, 27(2): 1170-1172
[12] NIE Lin-Ru, GONG Yu-Lan, MEI Dong-Cheng. Stochastic Resonance in a Spatially Symmetric and Flashing Periodic Potential Subjected to Correlated Noises[J]. Chin. Phys. Lett., 2009, 26(10): 1170-1172
[13] CHEN Ting, HUA Da-Yin, LIN Su. Kinetic Phase Transition in A2+B2 → 2AB Reaction System with Particle Diffusion[J]. Chin. Phys. Lett., 2007, 24(9): 1170-1172
[14] LI Xin-Xia, TANG Yi. Anomalous Heat Conduction in One-Dimensional Dimerized Lattices[J]. Chin. Phys. Lett., 2007, 24(4): 1170-1172
[15] ZHAO Hui, GAO Zi-You. Modular Epidemic Spreading in Small-World Networks[J]. Chin. Phys. Lett., 2007, 24(4): 1170-1172
Viewed
Full text


Abstract