Chin. Phys. Lett.  1997, Vol. 14 Issue (2): 109-112    DOI:
Original Articles |
Dynamics of Soliton-Soliton Interactions in Parametrically-Driven Systems
WANG Xin-long
Institute of Acoustics, Nanjing University, Nanjing 210093
Cite this article:   
WANG Xin-long 1997 Chin. Phys. Lett. 14 109-112
Download: PDF(244KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The parametrically-driven, damped nonlinear Schrödinger equation is numerically investigated and the parameter regions for the double-solitons of like polarity are found. The simulations of the soliton evolution in the parameter regions are in good agreement with the experimental observations. The computations also reveal that the “particles number”, momentum and energy are no more constants but vary in a periodic fashion in the system.
Keywords: 43.25.Rq      47.35.+i      47.20.Ky     
Published: 01 February 1997
PACS:  43.25.Rq (Solitons, chaos)  
  47.35.+i  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1997/V14/I2/0109
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xin-long
Related articles from Frontiers Journals
[1] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 109-112
[2] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 109-112
[3] TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J]. Chin. Phys. Lett., 2010, 27(7): 109-112
[4] BAO Chun-Yu, TANG Chao, YIN Xie-Zhen, LU Xi-Yun. Flutter of Finite-Span Flexible Plates in Uniform Flow[J]. Chin. Phys. Lett., 2010, 27(6): 109-112
[5] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 109-112
[6] LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei. Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors[J]. Chin. Phys. Lett., 2010, 27(3): 109-112
[7] ZHANG Zheng-Di, BI Qin-Sheng . Singular Wave Solutions of Two Integrable Generalized KdV Equations[J]. Chin. Phys. Lett., 2010, 27(10): 109-112
[8] ZHAO Wei, LU Ke-Qing, ZHANG Yi-Qi, YANG Yan-Long, WANG Yi-Shan, LIUXue-Ming. Intermediate Self-similar Solutions of the Nonlinear Schrödinger Equation with an Arbitrary Longitudinal Gain Profile[J]. Chin. Phys. Lett., 2009, 26(4): 109-112
[9] ZHANG Hua-Yan, RAN Zheng. Lie Symmetry and Nonlinear Instability in Computation of KdV Solitons[J]. Chin. Phys. Lett., 2009, 26(3): 109-112
[10] YUAN Xu-Jin, SHAO Xin, LIAO Hui-Min, OUYANG Qi. Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System[J]. Chin. Phys. Lett., 2009, 26(2): 109-112
[11] ZHANG Qi-Chang, WANG Wei, LI Wei-Yi. Heteroclinic Bifurcation of Strongly Nonlinear Oscillator[J]. Chin. Phys. Lett., 2008, 25(5): 109-112
[12] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 109-112
[13] WANG Qi, ZHANG Hua, MIAO Guo-Qing, WEI Rong-Jue. Water Surface Wave in a Trough with Periodical Topographic Bottom[J]. Chin. Phys. Lett., 2007, 24(8): 109-112
[14] DAI Zheng-De, , LI Shao-Lin, LI Dong-Long, ZHU Ai-Jun. Periodic Bifurcation and Soliton Deflexion for Kadomtsev--Petviashvili Equation[J]. Chin. Phys. Lett., 2007, 24(6): 109-112
[15] AA Yan, CAO Zhong-Hua, HU Wen-Rui. Transition to Chaos in the Floating Half Zone Convection[J]. Chin. Phys. Lett., 2007, 24(2): 109-112
Viewed
Full text


Abstract