CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling |
Shu-Zhe Mei1,2, Quan Wang1,3, Mei-Lan Hao1,2,4, Jian-Kai Xu1,2, Hong-Ling Xiao1,2, Chun Feng1,2, Li-Juan Jiang1,2, Xiao-Liang Wang1,2**, Feng-Qi Liu1,2, Xian-Gang Xu3, Zhan-Guo Wang1,2 |
1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2University of Chinese Academy of Sciences, Beijing 100049 3State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 4School of Information & Electrical Engineering, Hebei University of Engineering, Handan 056038
|
|
Cite this article: |
Shu-Zhe Mei, Quan Wang, Mei-Lan Hao et al 2018 Chin. Phys. Lett. 35 098101 |
|
|
Abstract Metal organic chemical vapor deposition (MOCVD) growth systems are one of the main types of equipment used for growing single crystal materials, such as GaN. To obtain film epitaxial materials with uniform performance, the flow field and temperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to study the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding significance for the growth of GaN film materials.
|
|
Received: 31 May 2018
Published: 29 August 2018
|
|
PACS: |
81.15.Aa
|
(Theory and models of film growth)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
|
Fund: Supported by the National Key R&D Program of China under Grant No 2016YFB0400104. |
|
|
[1] | Cui L et al 2015 J. Semicond. 36 103002 | [2] | Liu S et al 2011 J. Appl. Phys. 110 113514 | [3] | Liu S T, Zhao D G, Yang J, Jiang D S, Liang F, Chen P, Zhu J J, Liu Z S, Li X, Liu W et al 2017 Chin. Phys. B 26 107102 | [4] | Navamathavan R, Ra Y H, Song K Y, Kim D W and Lee C R 2011 Curr. Appl. Phys. 11 77 | [5] | Stringfellow G B 1999 Organometallic Vapor-Phase Epitaxy: Theory and Practice (New York: Academic Press) | [6] | Wang J, Wang T Q, Pan G S and Lu X C 2016 Appl. Surf. Sci. 361 18 | [7] | Wang Y J et al 2017 Opt. Commun. 387 440 | [8] | Zhang Y, Wu Z F, Gao P F, Fang D Q and Zhang S L 2017 J. Alloys Compd. 704 478 | [9] | Gurary A I, Tompa G S, Thompson A G, Stall R A, Zawadzki P A and Schumaker N E 1994 J. Cryst. Growth 145 642 | [10] | Hwang C Y, Schurman M J, Mayo W E, Lu Y C, Stall R A and Salagaj T 1997 J. Electron. Mater. 26 243 | [11] | Thompson A G 1997 Mater. Lett. 30 255 | [12] | Li J, Wang J, Cai J D, Xu Y F, Fan B F and Wang G 2018 Int. Commun. Heat Mass Transfer 91 64 | [13] | Breil W G, Coltrin M E, Creighton J R, Hou H Q, Moffat H K and Tsao J Y 1999 Mater. Sci. Eng. R 24 241 | [14] | Dimitrios I, Kremer A M, McKenna D R and Jensen K F 1987 J. Cryst. Growth 85 154 | [15] | Fotiadis D I and Jensen K F 1990 J. Cryst. Growth 102 743 | [16] | Kuo W S, Wang C Y, Tuh J L and Lin T F 2005 J. Cryst. Growth 274 265 | [17] | Kadinski L, Merai V, Parekh A, Ramer J, Armour E, Stall R, Gurary A, Galyukov A and Makarov Y 2004 J. Cryst. Growth 261 175 | [18] | Shin C Y, Baek B J, Lee C R, Pak B, Yoon J M and Park K S 2003 J. Cryst. Growth 247 301 | [19] | Gkinis P A, Aviziotis I G, Koronaki E D, Gakis G P, Boudouvis A G 2017 J. Cryst. Growth 458 140 | [20] | Tseng C F, Tsai T Y, Huang Y H, Lee M T and Horng R H 2015 J. Cryst. Growth 432 54 | [21] | Hu C K, Chen C J, Wei T C, Li T T, Huang C Y, Chao C L and Lin Y J 2017 Surf. Coat. Technol. 7 112 | [22] | Wu Y Y 2017 Dynamic Simulation and Modelling of Chemical Vapour Deposition Process (Nottingham: University of Nottingham) | [23] | Li J, Fei Z Y, Xu Y F, Wang J, Fan B F, Ma X J and Wang G 2018 R. Soc. Open Sci. 5 171757 | [24] | Kazakov D V, Tomas V, Bernhard Z, J Andrew C, Spagnolo D V et al 1999 Organometallic vapor-phase epitaxy (New York: Academic Press) p 251 | [25] | Panton R L 2013 Incompressible Flow 4th edn (New York: Wiley) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|