Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 038701    DOI: 10.1088/0256-307X/27/3/038701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Monte Carlo Simulation on Growth of Antibody-Antigen Complexes: the Role of Unequal Reactivity
ZHANG Ping1,2, WANG Hai-Jun1,3,4
1College of Chemistry and Environment Science, Hebei University, Baoding 071002 2Department of Biomedical Engineering, Chengde Medical College, Chengde 067000 3International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 4Key Laboratory of Medical Chemistry and Molecular Diagnosis (Ministry of Education), Hebei University, Baoding 071002
Cite this article:   
ZHANG Ping, WANG Hai-Jun 2010 Chin. Phys. Lett. 27 038701
Download: PDF(622KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Growth of Antibody-Antigen complexes in a multivalent Antibody-Antigen system is studied by the Monte Carlo simulation method. The validity of the algorithm is first demonstrated for the case of the equal reactivity, then the simulation is presented for the case of unequal reactivity. It is shown that the influence of the unequal reactivity on the critical point, size distribution and the weight-average binding degree is significant. Especially, the gelation regions for the cases of unequal reactivity are studied, which can provide some useful clues for the immunological experiments.

Keywords: 87.10.Rt      82.39.-k      87.15.-v      82.30.Nr     
Received: 12 May 2009      Published: 09 March 2010
PACS:  87.10.Rt (Monte Carlo simulations)  
  82.39.-k (Chemical kinetics in biological systems)  
  87.15.-v (Biomolecules: structure and physical properties)  
  82.30.Nr (Association, addition, insertion, cluster formation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/038701       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/038701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ping
WANG Hai-Jun
[1] Abbas A K and Lichtman A H 2003 Cellular and Molecular Immunology 5th edn (Philadelphia: W B Saunders)
[2] Koivunen M K and Krogsrud R L 2006 Lab. Med. 37 490
[3] Van Oss C J 1995 Mol. Immunol. 32 199
[4] Reisberg M A et al 1981 Clin. Exp. Immunol. 46 443
[5] Segal D M et al 1983 J. Immunol. 130 130
[6] Brennan F M et al 1983 J. Immunol Methods 56 149
[7] Doekes G et al 1984 Scand. J. Immunol. 19 99
[8] Menon A K et al 1986 J. Cell Biol. 102 541
[9] Murphy R M et al 1990 Biochemistry 29 889
[10] Kuczek T and Moyle W R 1985 J. Immunol. Methods 84 251
[11] Wofsy C and Goldstein B 1987 Mol. Immunol. 24 151
[12] Shiau L D 1995 J. Immunol. Methods 178 267
[13] Steensgaard J, Liu B M et al 1977 Immunology 32 445
[14] Macken C A and Perelson A S 1982 J. Math. Biology 14 365
[15] Spouge J L 1983 Proc. R. Soc. London A 387 351
[16] Shiau L D 1996 Biopolymers 39 445
[17] Goldberg R J 1952 J. Am. Chem. Soc. 74 5715
[18] Goldberg R J 1953 J. Am. Chem. Soc. 75 3127
[19] Palmiter M T and Aladjem F 1963 J. Theor. Biol. 5 211
[20] Laurenzi I J et al 2003 Phys. Rev. E 67 051103
[21] Tanaka F 1989 Phys. Rev. Lett. 62 2759
[22] Spouge J L 1983 Macromolecules 16 831
[23] Semenov A N and Rubinstein M 1998 Macromolecules 31 1373
[24] Bailey M E et al 1956 Ind. Eng. Chem. 48 794
[25] Lenz R W et al 1962 J. Polym. Sci. 58 351
[26] Hodgkin J H 1976 J. Polym. Sci. Polym. Chem. Edn. 14 409
[27] Kronstadt M, Dubin P L and Tyburczy, J A 1978 Macromolecules 11 37
[28] Gupta S K, Kumar A and Bhargava A 1979 Eur. Polym. J. 15 557
[29] Gandhi K S and Babu S V 1980 Macromolecules 13 791
[30] Kumar A 1987 Macromolecules 20 220
[31] Park O O 1988 Macromolecules 21 732
[32] Yang J et al 2008 Phys. Rev. E 78 031910
[33] Yang Y L and Zhang H D 1993 Monte Carlo Methods in Polymer Science (ShangHai: Fudan University Press)
[34] von Schulthess G K, Benedek G B and De Blois R W 1983 Macromolecules 16 434
[35] Gillespie D T 1975 J. Atmos. Sci. 32 1977
[36] Gillespie D T 1976 J. Comput. Phys. 22 403
[37] Tang A C and Kiang Y S 1958 Science Record, New Ser. 11 110
[38] Tang A C 1985 Statistical Theory of Polymeric Reactions
Related articles from Frontiers Journals
[1] DENG Li-Li, TANG Wan-Sheng**, ZHANG Jian-Xiong . Coevolution of Structure and Strategy Promoting Fairness in the Ultimatum Game[J]. Chin. Phys. Lett., 2011, 28(7): 038701
[2] TIE Zuo-Xiu, QIN Meng**, ZOU Da-Wei, CAO Yi**, WANG Wei . Photo-Crosslinking Induced Geometric Restriction Controls the Self-Assembly of Diphenylalanine Based Peptides[J]. Chin. Phys. Lett., 2011, 28(2): 038701
[3] SU Qian-Zhen, YU Jie, NIU Ying-Yu, CONG Shu-Lin. Rovibrational Formation of Ultracold NaH Molecules Induced by an Ultrashort Laser Pulse[J]. Chin. Phys. Lett., 2010, 27(9): 038701
[4] PAN Bing-Yi, ZHANG Ling-Yun, DOU Shuo-Xing, WANG Peng-Ye. Effect of Laser Field and Mechanical Force on Deoxyribonucleic Acid Melting[J]. Chin. Phys. Lett., 2010, 27(7): 038701
[5] M. D. Ganji, H. Yazdani. Interaction between B-Doped C60 Fullerene and Glycine Amino Acid from First-Principles Simulation[J]. Chin. Phys. Lett., 2010, 27(4): 038701
[6] WU Zheng-Yi, FENG Jin-Fu, WU Xiao-Shan. Thermal Vibration and Twist Induced Semiconducting Behaviour in Short DNA Wires[J]. Chin. Phys. Lett., 2009, 26(2): 038701
[7] HU Dong-Sheng, ZHU Chen-Ping, ZHANG Long-Qiang, HE Da-Ren, WANG Bing-Hong. Gap Caused by Strong Pairing in the Ladder Model of DNA Molecules[J]. Chin. Phys. Lett., 2008, 25(5): 038701
[8] NIU Ying-Yu, WANG Rong, LIU Li, CONG Shu-Lin. Photoassociation Reactions H+D+ and H++D in Ultrashort Pulse Laser Fields[J]. Chin. Phys. Lett., 2007, 24(12): 038701
[9] ZHAO Wei-Jia, WENG Yu-Quan, FU Jing-Li,. Lie Symmetries and Conserved Quantities for Super-Long Elastic Slender Rod[J]. Chin. Phys. Lett., 2007, 24(10): 038701
[10] ZHANG Hong-Yan, LIANG Ru-Qiang, JIN Kui-Juan, Lü Hui-Bin, ZHU Xiang-Dong, ZHOU Yue-Liang, RUAN Kang-Cheng, YANG Guo-Zhen. Applications of Oblique-Incidence Reflectivity Difference Method in Primary Study of Protein Biomolecules[J]. Chin. Phys. Lett., 2006, 23(4): 038701
[11] SONG Fan, MOYNE Christian, BAI Yi-Long. Electrostatic Interactions Between Glycosaminoglycan Molecules[J]. Chin. Phys. Lett., 2005, 22(2): 038701
[12] ZHANG Yi, HU Jun, WU Shi-Ying, AI Xiao-Bai, LI Min-Qian. Experiments and Models of DNA Nano-Catenary Patterns Manipulated by Liquid Flow[J]. Chin. Phys. Lett., 2002, 19(3): 038701
[13] WANG Ao-Jin, HU Kun-Sheng. Calibration of Membrane Viscosity of the Reconstituted Vesicles by Measurement of Rotational Diffusion of Bacteriorhodopsin[J]. Chin. Phys. Lett., 2002, 19(11): 038701
[14] WANG Hai-Jun, HONG Xiao-Zhong, ZHAO Min, BA Xin-Wu. Statistical Parameters for Hydrogen Bonding Networks: One Component[J]. Chin. Phys. Lett., 2001, 18(6): 038701
[15] WANG Hai-Jun, BA Xin-Wu, ZHAO Min, LI Ze-Sheng. A Statistical Theory for Hydrogen Bonding Networks: One Component Case[J]. Chin. Phys. Lett., 2000, 17(1): 038701
Viewed
Full text


Abstract