Original Articles |
|
|
|
|
Epitaxial Properties of Co-Doped ZnO Thin Films Grown by Plasma Assisted Molecular Beam Epitaxy |
CAO Qiang;DENG Jiang-Xia;LIU Guo-Lei;CHEN Yan-Xue;YAN Shi-Shen;MEI Liang-Mo |
1School of Physics and Microelectronics, Shandong University, Jinan 2501002National Key Laboratory of Crystal Materials, Shandong University, Jinan250100 |
|
Cite this article: |
CAO Qiang, DENG Jiang-Xia, LIU Guo-Lei et al 2007 Chin. Phys. Lett. 24 2951-2954 |
|
|
Abstract High quality Co-doped ZnO thin films are grown on single crystalline Al2O3(0001) and ZnO(0001) substrates by oxygen plasma assisted molecular beam epitaxy at a relatively lower substrate temperature of 450°C. The epitaxial conditions are examined with in-situ reflection high energy electron diffraction (RHEED) and ex-situ high resolution x-ray diffraction (HRXRD). The epitaxial thin films are single crystal at film thickness smaller than 500nm and nominal concentration of Co dopant up to 20%. It is indicated that the Co cation is incorporated into the ZnO matrix as Co2+ substituting Zn2+ ions. Atomic force microscopy shows smooth surfaces with rms roughness of 1.9nm. Room-temperature magnetization measurements reveal that the Co-doped ZnO thin films are ferromagnetic with Curie temperatures TC above room temperature.
|
Keywords:
75.50.Pp
68.55.Jk
|
|
Received: 25 May 2007
Published: 20 September 2007
|
|
|
|
|
|
[1] Ohno H 1998 Science 281 951 [2] Furdyna J K 1988 J. Appl. Phys. 64 R29 [3] Zuti\'c I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323 [4] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019 [5] Wang Q, Sun Q, Jena P and Kawazoe Y 2004 Phys. Rev. B 70 052408 [6] Ghosh S, Sih V, Lau W H, Awschaloma D D, Bae S Y, WangS, Vaidya Sand Chapline G 2005 Appl. Phys. Lett. 86 232507 [7] Ueda K, Tabata H and Kawai T 2001 Appl. Phys. Lett. 79988 [8] Venkatesan M, Fitzgerald C B, Lunney J G and Coey J M D 2004 Phys. Rev. Lett. 93 177206 [9] Lee H J, Jeong S Y, Cho C R and Park C H 2002 Appl. Phys.Lett. 81 4020 [10] Lim S W, Hwang D K and Myoung J M 2003 Solid State Commun. 125 231 [11] Ramachandran S, Tiwari A and Narayan J 2004 Appl. Phys.Lett. 84 5255 [12] Kim J H, Kim H, Kim D, Ihm Y E and Choo W K 2003 Physica B 327 304 [13] Pacuski W, Ferrand D, Cibert J, Deparis C, Gaj J A, Kossacki P andMorhain C 2006 Phys. Rev. B 73 035214 [14] Jin Z, Fukumura T, Kawasaki M, Ando K, Saito H, Sekiguchi T, Yoo YZ, Murakami M, Matsumoto Y, Hasegawa T and Koinuma H 2001 Appl.Phys. Lett. 78 3824 [15] Sati P, Hayn R, Kuzian R, R\'egnier S, Sch\"afer S, Stepanov A,Morhain C, Deparis C, La\"ugt M, Goiran M and Golacki Z 2006 Phys.Rev. Lett. 96 017203 [16] Kittilstved K R, Schwartz D A, Tuan A C, Heald S M, Chambers S Aand Gamelin D R 2006 Phys. Rev. Lett. 97 037203 [17] Sati P, Deparis D, Morhain C, Sch\"aafer S and Stepanov A 2007 Phys. Rev. Lett. 98 137204 [18] Liu G L, Cao Q, Deng J X, Xing P F, Tian Y F, Chen Y C, Yan S Sand Mei L M 2007 Appl. Phys. Lett. 90 052504 [19] Frank F C 1951 Acta Crystallogr. 4 497 [20] Heying B, Tarsa E J, Elsass C R, Fini P, DenBaars S P and Speck JS 1999 J. Appl. Phys. 85 6470 [21] Kaminsk A and Das Sarma S 2002 Phys. Rev. Lett. 88247202 [22] Lee E C and Chang K J 2004 Phys. Rev. B 69 085205 [23] Chanier T, Sargolzaei M, Opahle I, Hayn R and Koepernik K 2006 Phys. Rev. B 73 134418 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|