Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 090503    DOI: 10.1088/0256-307X/40/9/090503
GENERAL |
Interacting Solitons, Periodic Waves and Breather for Modified Korteweg–de Vries Equation
Vladimir I. Kruglov1* and Houria Triki2
1Centre for Engineering Quantum Systems, School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
2Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, P. O. Box 12, 23000 Annaba, Algeria
Cite this article:   
Vladimir I. Kruglov and Houria Triki 2023 Chin. Phys. Lett. 40 090503
Download: PDF(2058KB)   PDF(mobile)(2074KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically demonstrate a rich and significant new families of exact spatially localized and periodic wave solutions for a modified Korteweg–de Vries equation. The model applies for the description of different nonlinear structures which include breathers, interacting solitons and interacting periodic wave solutions. A joint parameter which can take both positive and negative values of unity appeared in the functional forms of those closed form solutions, thus implying that every solution is determined for each value of this parameter. The results indicate that the existence of newly derived structures depend on whether the type of nonlinearity of the medium should be considered self-focusing or defocusing. The obtained nonlinear waveforms show interesting properties that may find practical applications.
Received: 24 July 2023      Published: 07 September 2023
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/090503       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/090503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Vladimir I. Kruglov and Houria Triki
[1] Mahnke C and Mitschke F 2012 Phys. Rev. A 85 033808
[2] Wang L H, Porsezian K, and He J S 2013 Phys. Rev. E 87 053202
[3] Mežnaršič T, Arh T, Brence J, Pišljar J, Gosar K, Gosar V Z, Žitko R, Zupanič E, and Jeglič P 2019 Phys. Rev. A 99 033625
[4] Marchukov O V, Malomed B A, Dunjko V, Ruhl J, Olshanii M, Hulet R G, and Yurovsky V A 2020 Phys. Rev. Lett. 125 050405
[5] Johansson M, Sukhorukov A A, and Kivshar Y S 2009 Phys. Rev. E 80 046604
[6] Kuznetsov E A, Rubenchik A M, and Zakharov V E 1986 Phys. Rep. 142 103
[7] Lamb K G, Polukhina O, Talipova T, Pelinovsky E, Xiao W, and Kurkin A 2007 Phys. Rev. E 75 046306
[8] Chabchoub A, Hoffmann N, Onorato M, and Akhmediev N 2012 Phys. Rev. X 2 011015
[9] Chowdury A and Krolikowski W 2017 Phys. Rev. E 95 062226
[10] Akhmediev N N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[11] Ma Y C 1979 Stud. Appl. Math. 60 43
[12] Akhmediev N, Soto-Crespo J M, and Ankiewicz A 2009 Phys. Lett. A 373 2137
[13] Zayed E M E, Shohib R M A, Alngar M E M, Biswas A, Ekici M, Khan S, Alzahrani A K, and Belic M R 2021 Ukr. J. Phys. Opt. 22 38
[14] Adem A R, Ntsime B P, Biswas A, Khan S, Alzahrani A K, and Belic M R 2021 Ukr. J. Phys. Opt. 22 83
[15] Biswas A, Edoki J, Guggilla P, Khan S, Alzahrani A K, and Belic M R 2021 Ukr. J. Phys. Opt. 22 123
[16] Pelinovsky D and Grimshaw R 1997 Phys. Lett. A 229 165
[17] Ziegler V, Dinkel J, Setzer C, and Lonngren K E 2001 Chaos Solitons & Fractals 12 1719
[18] Grimshaw R, Pelinovsky E, and Talipova T 1997 Nonlinear Processes Geophys. 4 237
[19] Ono H 1992 J. Phys. Soc. Jpn. 61 4336
[20] Ralph E A and Pratt L 1994 J. Nonlinear Sci. 4 355
[21] Komatsu T S and Sasa S I 1995 Phys. Rev. E 52 5574
[22] Ge H X, Dai S Q, Xue Y, and Dong L Y 2005 Phys. Rev. E 71 066119
[23] Li Z P and Liu Y C 2006 Eur. Phys. J. B 53 367
[24] Khater A H, El-Kalaawy O H, and Callebaut D K 1998 Phys. Scr. 58 545
[25] Lonngren K E 1998 Opt. Quantum Electron. 30 615
[26] Leblond H and Mihalache D 2009 Phys. Rev. A 79 063835
[27] Leblond H and Mihalache D 2010 J. Phys. A 43 375205
[28] Triki H, Leblond H, and Mihalache D 2012 Opt. Commun. 285 3179
[29] Leblond H, Triki H, and Mihalache D 2013 Rom. Rep. Phys. 65 925
[30] Leblond H, Grelu P, and Mihalache D 2014 Phys. Rev. A 90 053816
[31] Wadati M 1972 J. Phys. Soc. Jpn. 32 1681
[32] Kevrekidis P G, Khare A, Saxena A, and Herring G 2004 J. Phys. A 37 10959
[33]Lamb J L 1980 Elements of Soliton Theory (New York: John Wiley & Sons)
[34] Grimshaw R, Pelinovsky E, Talipova T, Ruderman M, and Erdélyi R 2005 Stud. Appl. Math. 114 189
[35] Ankiewicz A, Soto-Crespo J M, and Akhmediev N 2010 Phys. Rev. E 81 046602
[36] Zhang G Q and Yan Z 2020 Physica D 410 132521
[37] Geng K L, Zhu B W, Cao Q H, Dai C Q, and Wang Y Y 2023 Nonlinear Dyn. 111 16483
[38] He J T, Fang P P, and Lin J 2022 Chin. Phys. Lett. 39 020301
[39] Wen X K, Jiang J H, Liu W, and Dai C Q 2023 Nonlinear Dyn. 111 13343
[40] Miura R M, Gardner C S, and Kruskal M D 1968 J. Math. Phys. 9 1204
[41] Pego R L and Weinstein M I 1992 Philos. Trans. R. Soc. A 340 47
[42]Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer-Verlag)
[43] Slyunyaev A V 2001 J. Exp. Theor. Phys. 92 529
[44] Slunyaev A V and Pelinovsky E N 2016 Phys. Rev. Lett. 117 214501
[45]Zakharov V E and Shabat A B 1972 J. Exp. Theor. Phys. 34 62
[46] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
[47] Ma Y L and Li B Q 2022 Eur. Phys. J. Plus 137 861
[48] Alejo M A and Muñoz C 2013 Commun. Math. Phys. 324 233
Related articles from Frontiers Journals
[1] Xinyi Zhang and Ye Wu. Soliton Interactions with Different Dispersion Curve Functions in Heterogeneous Systems[J]. Chin. Phys. Lett., 2023, 40(8): 090503
[2] Si-Yu Zhu, De-Xing Kong, and Sen-Yue Lou. Dark Korteweg–De Vrise System and Its Higher-Dimensional Deformations[J]. Chin. Phys. Lett., 2023, 40(8): 090503
[3] Xi-Meng Liu, Zhi-Yang Zhang, and Wen-Jun Liu. Physics-Informed Neural Network Method for Predicting Soliton Dynamics Supported by Complex Parity-Time Symmetric Potentials[J]. Chin. Phys. Lett., 2023, 40(7): 090503
[4] Cuicui Ding, Qin Zhou, Siliu Xu, Houria Triki, Mohammad Mirzazadeh, and Wenjun Liu. Nonautonomous Breather and Rogue Wave in Spinor Bose–Einstein Condensates with Space-Time Modulated Potentials[J]. Chin. Phys. Lett., 2023, 40(4): 090503
[5] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 090503
[6] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 090503
[7] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 090503
[8] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 090503
[9] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 090503
[10] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 090503
[11] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 090503
[12] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 090503
[13] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 090503
[14] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 090503
[15] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 090503
Viewed
Full text


Abstract