THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
All-Orders Evolution of Parton Distributions: Principle, Practice, and Predictions |
Pei-Lin Yin1, Yin-Zhen Xu2,3, Zhu-Fang Cui4,5, Craig D. Roberts4,5*, and José Rodríguez-Quintero2 |
1College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 2Dpto. Ciencias Integradas, Centro de Estudios Avanzados en Fis., Mat. y Comp., Fac. Ciencias Experimentales, Universidad de Huelva, Huelva 21071, Spain 3Dpto. Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, E-41013 Sevilla, Spain 4School of Physics, Nanjing University, Nanjing 210093, China 5Institute for Nonperturbative Physics, Nanjing University, Nanjing 210093, China
|
|
Cite this article: |
Pei-Lin Yin, Yin-Zhen Xu, Zhu-Fang Cui et al 2023 Chin. Phys. Lett. 40 091201 |
|
|
Abstract Parton distribution functions (PDFs) are defining expressions of hadron structure. Exploiting the role of effective charges in quantum chromodynamics, an algebraic scheme is described which, given any hadron's valence parton PDFs at the hadron scale, delivers predictions for all its PDFs (unpolarized and polarized) at any higher scale. The scheme delivers results that are largely independent of both the value of the hadron scale and the pointwise form of the charge; and, inter alia, enables derivation of a model-independent identity that relates the strength of the proton's gluon helicity PDF, $\Delta G_p^\zeta$, to that of the analogous singlet polarized quark PDF and valence quark momentum fraction. Using available data fits and theory predictions, the identity yields $\Delta G_p(\zeta_{_{\scriptstyle \rm C}}=\sqrt{3}\,{\rm GeV})=1.48(10)$. It furthermore entails that the measurable quark helicity contribution to the proton spin is $\tilde a_{0p}^{\zeta_{_{\scriptstyle \rm C}}}=0.32(3)$, thereby reconciling contemporary experiment and theory.
|
|
Received: 09 June 2023
Express Letter
Published: 20 August 2023
|
|
PACS: |
12.38.Aw
|
(General properties of QCD (dynamics, confinement, etc.))
|
|
12.38.Qk
|
(Experimental tests)
|
|
13.60.Hb
|
(Total and inclusive cross sections (including deep-inelastic processes))
|
|
|
|
|
[1] | Gell-Mann M 1964 Phys. Lett. 8 214 |
[2] | Zweig G 1964 An SU(3) model for strong interaction symmetry and its breaking. Parts 1 and 2 (CERN Reports No. 8182/TH. 401 and No. 8419/TH. 412). |
[3] | Taylor R E 1991 Rev. Mod. Phys. 63 573 |
[4] | Kendall H W 1991 Rev. Mod. Phys. 63 597 |
[5] | Friedman J I 1991 Rev. Mod. Phys. 63 615 |
[6] | Friedman J I, Kendall H W, and Taylor R E 1991 Rev. Mod. Phys. 63 629 |
[7] | Ellis R K, Stirling W J, and Webber B R 1996 QCD and Collider Physics (Cambridge: Cambridge University Press) |
[8] | Feynman R P 1972 Photon-Hadron Interactions (New York: W. A. Benjamin) |
[9] | Denisov O et al. Letter of Intent (Draft 2.0): A New QCD facility at the M2 beam line of the CERN SPS |
[10] | Aguilar A C et al. 2019 Eur. Phys. J. A 55 190 |
[11] | Brodsky S J et al. 2020 Int. J. Mod. Phys. E 29 2030006 |
[12] | Chen X R, Guo F K, Roberts C D, and Wang R 2020 Few-Body Syst. 61 43 |
[13] | Anderle D P et al. 2021 Front. Phys. 16 64701 |
[14] | Arrington J et al. 2021 J. Phys. G 48 075106 |
[15] | Aoki K et al. 2021 arXiv:2110.04462 [nucl-ex] |
[16] | Quintans C 2022 Few-Body Syst. 63 72 |
[17] | Brodsky S J and Lepage G P 1982 Perturbative Quantum Chromodynamics. In: Lectures on Lepton Nucleon Scattering and Quantum Chromodynamics. Progress in Physics vol 4 pp 255–422 |
[18] | Brodsky S J, Pauli H C, and Pinsky S S 1998 Phys. Rep. 301 299 |
[19] | Politzer H D 2005 Proc. Natl. Acad. Sci. USA 102 7789 |
[20] | Gross D J 2005 Proc. Natl. Acad. Sci. USA 102 9099 |
[21] | Wilczek F 2005 Proc. Natl. Acad. Sci. USA 102 8403 |
[22] | Dokshitzer Y L 1977 Sov. Phys.-JETP 46 641 |
[23] | Gribov V N and Lipatov L N 1971 Phys. Lett. B 37 78 |
[24] | Lipatov L N 1975 Sov. J. Nucl. Phys. 20 94 |
[25] | Altarelli G and Parisi G 1977 Nucl. Phys. B 126 298 |
[26] | Holt R J and Roberts C D 2010 Rev. Mod. Phys. 82 2991 |
[27] | Jaffe R L and Ross G G 1980 Phys. Lett. B 93 313 |
[28] | Lin H W et al. 2018 Prog. Part. Nucl. Phys. 100 107 |
[29] | Eichmann G, Sanchis-Alepuz H, Williams R, Alkofer R, and Fischer C S 2016 Prog. Part. Nucl. Phys. 91 1 |
[30] | Burkert V D and Roberts C D 2019 Rev. Mod. Phys. 91 011003 |
[31] | Fischer C S 2019 Prog. Part. Nucl. Phys. 105 1 |
[32] | Qin S X and Roberts C D 2020 Chin. Phys. Lett. 37 121201 |
[33] | Ding M H, Raya K, Binosi D, Chang L, Roberts C D, and Schmidt S M 2020 Phys. Rev. D 101 054014 |
[34] | Roberts C D, Richards D G, Horn T, and Chang L 2021 Prog. Part. Nucl. Phys. 120 103883 |
[35] | Binosi D 2022 Few-Body Syst. 63 42 |
[36] | Papavassiliou J 2022 Chin. Phys. C 46 112001 |
[37] | Ding M H, Roberts C D, and Schmidt S M 2023 Particles 6 57 |
[38] | Ferreira M N and Papavassiliou J 2023 Particles 6 312 |
[39] | Grunberg G 1980 Phys. Lett. B 95 70; [Erratum: 1982 Phys. Lett. B 110 501] |
[40] | Grunberg G 1984 Phys. Rev. D 29 2315 |
[41] | Deur A, Brodsky S J, and Roberts C D 2023 arXiv:2303.00723 [hep-ph] |
[42] | Deur A, Burkert V, Chen J P, and Korsch W 2022 Particles 5 171 |
[43] | Binosi D, Mezrag C, Papavassiliou J, Roberts C D, and Rodríguez-Quintero J 2017 Phys. Rev. D 96 054026 |
[44] | Cui Z F, Zhang J L, Binosi D, de Soto F, Mezrag C, Papavassiliou J, Roberts C D, Rodríguez-Quintero J, Segovia J, and Zafeiropoulos S 2020 Chin. Phys. C 44 083102 |
[45] | Cui Z F, Ding M, Gao F, Raya K, Binosi D, Chang L, Roberts C D, Rodríguez-Quintero J, and Schmidt S M 2021 Eur. Phys. J. A 57 5 |
[46] | Cui Z F, Ding M, Gao F, Raya K, Binosi D, Chang L, Roberts C D, Rodríguez-Quintero J, and Schmidt S M 2020 Eur. Phys. J. C 80 1064 |
[47] | Lu Y, Chang L, Raya K, Roberts C D, and Rodrı́guez-Quintero J 2022 Phys. Lett. B 830 137130 |
[48] | Chang L, Gao F, and Roberts C D 2022 Phys. Lett. B 829 137078 |
[49] | Glück M, Reya E, and Vogt A 1995 Z. Phys. C 67 433 |
[50] | Glück M, Reya E, and Vogt A 1998 Eur. Phys. J. C 5 461 |
[51] | Field R D and Feynman R P 1977 Phys. Rev. D 15 2590 |
[52] | Dove J et al. 2021 Nature 590 561 |
[53] | Ashman J et al. 1988 Phys. Lett. B 206 364 |
[54] | Anselmino M, Efremov A, and Leader E 1995 Phys. Rep. 261 1; [Erratum: 1997 Phys. Rep. 281 399] |
[55] | Deur A, Brodsky S J, and de Téramond G F 2019 Rep. Prog. Phys. 82 076201 |
[56] | de Florian D and Vogelsang W 2019 Phys. Rev. D 99 054001 |
[57] | Cabibbo N, Swallow E C, and Winston R 2003 Annu. Rev. Nucl. Part. Sci. 53 39 |
[58] | Workman R L, Burkert V D, Crede V et al. 2022 Prog. Theor. Exp. Phys. 2022 083C01 |
[59] | Chen C and Roberts C D 2022 Eur. Phys. J. A 58 206 |
[60] | Hou T J et al. 2021 Phys. Rev. D 103 014013 |
[61] | Cui Z F, Ding M, Morgado J M, Raya K, Binosi D, Chang L, Papavassiliou J, Roberts C D, Rodrı́guez-Quintero J, and Schmidt S M 2022 Eur. Phys. J. A 58 10 |
[62] | Adolph C et al. 2017 Phys. Lett. B 769 34 |
[63] | Altarelli G and Ross G G 1988 Phys. Lett. B 212 391 |
[64] | Cheng P, Yu Y, Xing H Y, Chen C, Cui Z F, and Roberts C D 2023 Phys. Lett. B 844 138074 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|