GENERAL |
|
|
|
|
Interacting Solitons, Periodic Waves and Breather for Modified Korteweg–de Vries Equation |
Vladimir I. Kruglov1* and Houria Triki2 |
1Centre for Engineering Quantum Systems, School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia 2Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, P. O. Box 12, 23000 Annaba, Algeria
|
|
Cite this article: |
Vladimir I. Kruglov and Houria Triki 2023 Chin. Phys. Lett. 40 090503 |
|
|
Abstract We theoretically demonstrate a rich and significant new families of exact spatially localized and periodic wave solutions for a modified Korteweg–de Vries equation. The model applies for the description of different nonlinear structures which include breathers, interacting solitons and interacting periodic wave solutions. A joint parameter which can take both positive and negative values of unity appeared in the functional forms of those closed form solutions, thus implying that every solution is determined for each value of this parameter. The results indicate that the existence of newly derived structures depend on whether the type of nonlinearity of the medium should be considered self-focusing or defocusing. The obtained nonlinear waveforms show interesting properties that may find practical applications.
|
|
Received: 24 July 2023
Published: 07 September 2023
|
|
PACS: |
05.45.Yv
|
(Solitons)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.81.Qb
|
(Fiber waveguides, couplers, and arrays)
|
|
|
|
|
[1] | Mahnke C and Mitschke F 2012 Phys. Rev. A 85 033808 |
[2] | Wang L H, Porsezian K, and He J S 2013 Phys. Rev. E 87 053202 |
[3] | Mežnaršič T, Arh T, Brence J, Pišljar J, Gosar K, Gosar V Z, Žitko R, Zupanič E, and Jeglič P 2019 Phys. Rev. A 99 033625 |
[4] | Marchukov O V, Malomed B A, Dunjko V, Ruhl J, Olshanii M, Hulet R G, and Yurovsky V A 2020 Phys. Rev. Lett. 125 050405 |
[5] | Johansson M, Sukhorukov A A, and Kivshar Y S 2009 Phys. Rev. E 80 046604 |
[6] | Kuznetsov E A, Rubenchik A M, and Zakharov V E 1986 Phys. Rep. 142 103 |
[7] | Lamb K G, Polukhina O, Talipova T, Pelinovsky E, Xiao W, and Kurkin A 2007 Phys. Rev. E 75 046306 |
[8] | Chabchoub A, Hoffmann N, Onorato M, and Akhmediev N 2012 Phys. Rev. X 2 011015 |
[9] | Chowdury A and Krolikowski W 2017 Phys. Rev. E 95 062226 |
[10] | Akhmediev N N and Korneev V I 1986 Theor. Math. Phys. 69 1089 |
[11] | Ma Y C 1979 Stud. Appl. Math. 60 43 |
[12] | Akhmediev N, Soto-Crespo J M, and Ankiewicz A 2009 Phys. Lett. A 373 2137 |
[13] | Zayed E M E, Shohib R M A, Alngar M E M, Biswas A, Ekici M, Khan S, Alzahrani A K, and Belic M R 2021 Ukr. J. Phys. Opt. 22 38 |
[14] | Adem A R, Ntsime B P, Biswas A, Khan S, Alzahrani A K, and Belic M R 2021 Ukr. J. Phys. Opt. 22 83 |
[15] | Biswas A, Edoki J, Guggilla P, Khan S, Alzahrani A K, and Belic M R 2021 Ukr. J. Phys. Opt. 22 123 |
[16] | Pelinovsky D and Grimshaw R 1997 Phys. Lett. A 229 165 |
[17] | Ziegler V, Dinkel J, Setzer C, and Lonngren K E 2001 Chaos Solitons & Fractals 12 1719 |
[18] | Grimshaw R, Pelinovsky E, and Talipova T 1997 Nonlinear Processes Geophys. 4 237 |
[19] | Ono H 1992 J. Phys. Soc. Jpn. 61 4336 |
[20] | Ralph E A and Pratt L 1994 J. Nonlinear Sci. 4 355 |
[21] | Komatsu T S and Sasa S I 1995 Phys. Rev. E 52 5574 |
[22] | Ge H X, Dai S Q, Xue Y, and Dong L Y 2005 Phys. Rev. E 71 066119 |
[23] | Li Z P and Liu Y C 2006 Eur. Phys. J. B 53 367 |
[24] | Khater A H, El-Kalaawy O H, and Callebaut D K 1998 Phys. Scr. 58 545 |
[25] | Lonngren K E 1998 Opt. Quantum Electron. 30 615 |
[26] | Leblond H and Mihalache D 2009 Phys. Rev. A 79 063835 |
[27] | Leblond H and Mihalache D 2010 J. Phys. A 43 375205 |
[28] | Triki H, Leblond H, and Mihalache D 2012 Opt. Commun. 285 3179 |
[29] | Leblond H, Triki H, and Mihalache D 2013 Rom. Rep. Phys. 65 925 |
[30] | Leblond H, Grelu P, and Mihalache D 2014 Phys. Rev. A 90 053816 |
[31] | Wadati M 1972 J. Phys. Soc. Jpn. 32 1681 |
[32] | Kevrekidis P G, Khare A, Saxena A, and Herring G 2004 J. Phys. A 37 10959 |
[33] | Lamb J L 1980 Elements of Soliton Theory (New York: John Wiley & Sons) |
[34] | Grimshaw R, Pelinovsky E, Talipova T, Ruderman M, and Erdélyi R 2005 Stud. Appl. Math. 114 189 |
[35] | Ankiewicz A, Soto-Crespo J M, and Akhmediev N 2010 Phys. Rev. E 81 046602 |
[36] | Zhang G Q and Yan Z 2020 Physica D 410 132521 |
[37] | Geng K L, Zhu B W, Cao Q H, Dai C Q, and Wang Y Y 2023 Nonlinear Dyn. 111 16483 |
[38] | He J T, Fang P P, and Lin J 2022 Chin. Phys. Lett. 39 020301 |
[39] | Wen X K, Jiang J H, Liu W, and Dai C Q 2023 Nonlinear Dyn. 111 13343 |
[40] | Miura R M, Gardner C S, and Kruskal M D 1968 J. Math. Phys. 9 1204 |
[41] | Pego R L and Weinstein M I 1992 Philos. Trans. R. Soc. A 340 47 |
[42] | Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer-Verlag) |
[43] | Slyunyaev A V 2001 J. Exp. Theor. Phys. 92 529 |
[44] | Slunyaev A V and Pelinovsky E N 2016 Phys. Rev. Lett. 117 214501 |
[45] | Zakharov V E and Shabat A B 1972 J. Exp. Theor. Phys. 34 62 |
[46] | Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press) |
[47] | Ma Y L and Li B Q 2022 Eur. Phys. J. Plus 137 861 |
[48] | Alejo M A and Muñoz C 2013 Commun. Math. Phys. 324 233 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|