Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 090502    DOI: 10.1088/0256-307X/40/9/090502
GENERAL |
Inverse Design of Phononic Crystal with Desired Transmission via a Gradient-Descent Approach
Yuhang Wei and Dahai He*
Department of Physics and Jiujiang Research Institute, Xiamen University, Xiamen 361005, China
Cite this article:   
Yuhang Wei and Dahai He 2023 Chin. Phys. Lett. 40 090502
Download: PDF(915KB)   PDF(mobile)(1056KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a general approach based on the gradient descent method to study the inverse problem, making it possible to reversely engineer the microscopic configurations of materials that exhibit desired macroscopic properties. Particularly, we demonstrate its application by identifying the microscopic configurations within any given frequency range to achieve transparent phonon transport through one-dimensional harmonic lattices. Furthermore, we obtain the phonon transmission in terms of normal modes and find that the key to achieving phonon transparency or phonon blocking state lies in the ratio of the mode amplitudes at ends.
Received: 22 July 2023      Editors' Suggestion Published: 10 September 2023
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.60.Cd (Classical transport)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  44.10.+i (Heat conduction)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/090502       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/090502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuhang Wei and Dahai He
[1] Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, and Kim C 2017 npj Comput. Mater. 3 54
[2] Butler K T, Davies D W, Cartwright H, Isayev O, and Walsh A 2018 Nature 559 547
[3] Fuhr A S and Sumpter B G 2022 Front. Mater. 9 865270
[4] Noh J, Gu G H, Kim S, and Jung Y 2020 Chem. Sci. 11 4871
[5] Freeze J G, Kelly H R, and Batista V S 2019 Chem. Rev. 119 6595
[6] Lu S H, Zhou Q H, Chen X Y, Song Z L, and Wang J L 2022 Natl. Sci. Rev. 9 nwac111
[7] Chen C T and Gu G X 2020 Adv. Sci. 7 1902607
[8] Noh J, Kim J, Stein H S, Sanchez-Lengeling B, Gregoire J M, Aspuru-Guzik A, and Jung Y 2019 Matter 1 1370
[9] Pei Z R, Rozman K A, Doğan O N, Wen Y H, Gao N, Holm E A, Hawk J A, Alman D E, and Gao M C 2021 Adv. Sci. 8 2101207
[10] Han T C, Bai X, Thong J T L, Li B W, and Qiu C W 2014 Adv. Mater. 26 1731
[11] Wang J, Dai G L, and Huang J P 2020 iScience 23 101637
[12] Yang S, Wang J, Dai G L, Yang F B, and Huang J P 2021 Phys. Rep. 908 1
[13] Li Y, Li W, Han T C, Zheng X, Li J X, Li B W, Fan S H, and Qiu C W 2021 Nat. Rev. Mater. 6 488
[14] Chen J, He J, Pan D K, Wang X T, Yang N, Zhu J J, Yang S A, and Zhang G 2022 Sci. Chin. Phys. Mech. & Astron. 65 117002
[15] Li B W, Wang L, and Casati G 2004 Phys. Rev. Lett. 93 184301
[16] Li B W, Wang L, and Casati G 2006 Appl. Phys. Lett. 88 143501
[17] Han T C, Bai X, Gao D L, Thong J T L, Li B W, and Qiu C W 2014 Phys. Rev. Lett. 112 054302
[18] Xu L J and Huang J P 2019 Phys. Rev. Appl. 12 044048
[19] Jiang J H, Lu S, and Chen J 2023 Chin. Phys. Lett. 40 096301
[20] Ouyang Y L, Yu C Q, Yan G, and Chen J 2021 Front. Phys. 16 43200
[21] Hu R, Iwamoto S, Feng L, Ju S, Hu S, Ohnishi M, Nagai N, Hirakawa K, and Shiomi J 2020 Phys. Rev. X 10 021050
[22] Hu R, Song J, Liu Y, Xi W, Zhao Y, Yu X, Cheng Q, Tao G, and Luo X 2020 Nano Energy 72 104687
[23] Yan S S, Wang Y, Gao Z B, Long Y, and Ren J 2021 Chin. Phys. Lett. 38 027301
[24] Roy Chowdhury P and Ruan X L 2022 npj Comput. Mater. 8 12
[25] Tan Y, Wang L, Wang Z, Peng J, and Ren J 2021 Chin. Phys. B 30 036301
[26] Yan S S, Liu Y, Wang Z, Lan X H, Wang Y, and Ren J 2023 Chin. Phys. B 32 057802
[27] Dhar A 2008 Adv. Phys. 57 457
[28] Zhai J X, Zhang Q Y, Cheng Z H, Ren J, Ke Y Q, and Li B W 2019 Phys. Rev. B 99 195429
[29] Jiang P F, Ouyang Y L, Ren W J, Yu C Q, He J, and Chen J 2021 APL Mater. 9 040703
[30] Yu C Q, Ouyang Y L, and Chen J 2022 Front. Phys. 17 53507
[31] Liu Y and He D H 2021 Chin. Phys. Lett. 38 044401
[32] Lepri S, Livi R, and Politi A 2003 Phys. Rep. 377 1
[33] Anderson P W 1958 Phys. Rev. 109 1492
[34] Ishii K 1973 Prog. Theor. Phys. Suppl. 53 77
Related articles from Frontiers Journals
[1] Xia Xiong, Yong-Cong Chen, Chunxiao Shi, and Ping Ao. Stochastic Gradient Descent and Anomaly of Variance-Flatness Relation in Artificial Neural Networks[J]. Chin. Phys. Lett., 2023, 40(8): 090502
[2] Xi-Ci Yang, Z. Y. Xie, and Xiao-Tao Yang. Exploring Explicit Coarse-Grained Structure in Artificial Neural Networks[J]. Chin. Phys. Lett., 2023, 40(2): 090502
[3] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 090502
[4] Jin-Jie Li, Lian-Ren Wu, Jia-Yin Qi, Qi-Ming Sun. Modeling Information Popularity Dynamics via Branching Process on Micro-Blog Network[J]. Chin. Phys. Lett., 2017, 34(6): 090502
[5] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 090502
[6] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 090502
[7] FANG Pin-Jie, ZHANG Duan-Ming, HE Min-Hua, JIANG Xiao-Qin. Exact Solution for Clustering Coefficient of Random Apollonian Networks[J]. Chin. Phys. Lett., 2015, 32(08): 090502
[8] JIA Li-Ping, Jasmina Tekić, DUAN Wen-Shan. Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice[J]. Chin. Phys. Lett., 2015, 32(4): 090502
[9] Hossam A. Ghany. Analytical Approach to Exact Solutions for the Wick-Type Stochastic Space-Time Fractional KdV Equation[J]. Chin. Phys. Lett., 2014, 31(06): 090502
[10] ZENG Ling-Zao, LIU Bing-Yang, XU Yi-Da, LI Jian-Long. Effect of Time Delay on Binary Signal Detection via a Bistable System[J]. Chin. Phys. Lett., 2014, 31(2): 090502
[11] YAN Xin, WU Yang. Topological and Spectral Perturbations in Complex Networks[J]. Chin. Phys. Lett., 2012, 29(12): 090502
[12] XU Yan, HUANG Hai-Jun, and YONG Gui. Modified Static Floor Field and Exit Choice for Pedestrian Evacuation[J]. Chin. Phys. Lett., 2012, 29(8): 090502
[13] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 090502
[14] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 090502
[15] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 090502
Viewed
Full text


Abstract