GENERAL |
|
|
|
|
Inverse Design of Phononic Crystal with Desired Transmission via a Gradient-Descent Approach |
Yuhang Wei and Dahai He* |
Department of Physics and Jiujiang Research Institute, Xiamen University, Xiamen 361005, China |
|
Cite this article: |
Yuhang Wei and Dahai He 2023 Chin. Phys. Lett. 40 090502 |
|
|
Abstract We propose a general approach based on the gradient descent method to study the inverse problem, making it possible to reversely engineer the microscopic configurations of materials that exhibit desired macroscopic properties. Particularly, we demonstrate its application by identifying the microscopic configurations within any given frequency range to achieve transparent phonon transport through one-dimensional harmonic lattices. Furthermore, we obtain the phonon transmission in terms of normal modes and find that the key to achieving phonon transparency or phonon blocking state lies in the ratio of the mode amplitudes at ends.
|
|
Received: 22 July 2023
Editors' Suggestion
Published: 10 September 2023
|
|
PACS: |
05.10.-a
|
(Computational methods in statistical physics and nonlinear dynamics)
|
|
05.60.Cd
|
(Classical transport)
|
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
44.10.+i
|
(Heat conduction)
|
|
|
|
|
[1] | Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, and Kim C 2017 npj Comput. Mater. 3 54 |
[2] | Butler K T, Davies D W, Cartwright H, Isayev O, and Walsh A 2018 Nature 559 547 |
[3] | Fuhr A S and Sumpter B G 2022 Front. Mater. 9 865270 |
[4] | Noh J, Gu G H, Kim S, and Jung Y 2020 Chem. Sci. 11 4871 |
[5] | Freeze J G, Kelly H R, and Batista V S 2019 Chem. Rev. 119 6595 |
[6] | Lu S H, Zhou Q H, Chen X Y, Song Z L, and Wang J L 2022 Natl. Sci. Rev. 9 nwac111 |
[7] | Chen C T and Gu G X 2020 Adv. Sci. 7 1902607 |
[8] | Noh J, Kim J, Stein H S, Sanchez-Lengeling B, Gregoire J M, Aspuru-Guzik A, and Jung Y 2019 Matter 1 1370 |
[9] | Pei Z R, Rozman K A, Doğan O N, Wen Y H, Gao N, Holm E A, Hawk J A, Alman D E, and Gao M C 2021 Adv. Sci. 8 2101207 |
[10] | Han T C, Bai X, Thong J T L, Li B W, and Qiu C W 2014 Adv. Mater. 26 1731 |
[11] | Wang J, Dai G L, and Huang J P 2020 iScience 23 101637 |
[12] | Yang S, Wang J, Dai G L, Yang F B, and Huang J P 2021 Phys. Rep. 908 1 |
[13] | Li Y, Li W, Han T C, Zheng X, Li J X, Li B W, Fan S H, and Qiu C W 2021 Nat. Rev. Mater. 6 488 |
[14] | Chen J, He J, Pan D K, Wang X T, Yang N, Zhu J J, Yang S A, and Zhang G 2022 Sci. Chin. Phys. Mech. & Astron. 65 117002 |
[15] | Li B W, Wang L, and Casati G 2004 Phys. Rev. Lett. 93 184301 |
[16] | Li B W, Wang L, and Casati G 2006 Appl. Phys. Lett. 88 143501 |
[17] | Han T C, Bai X, Gao D L, Thong J T L, Li B W, and Qiu C W 2014 Phys. Rev. Lett. 112 054302 |
[18] | Xu L J and Huang J P 2019 Phys. Rev. Appl. 12 044048 |
[19] | Jiang J H, Lu S, and Chen J 2023 Chin. Phys. Lett. 40 096301 |
[20] | Ouyang Y L, Yu C Q, Yan G, and Chen J 2021 Front. Phys. 16 43200 |
[21] | Hu R, Iwamoto S, Feng L, Ju S, Hu S, Ohnishi M, Nagai N, Hirakawa K, and Shiomi J 2020 Phys. Rev. X 10 021050 |
[22] | Hu R, Song J, Liu Y, Xi W, Zhao Y, Yu X, Cheng Q, Tao G, and Luo X 2020 Nano Energy 72 104687 |
[23] | Yan S S, Wang Y, Gao Z B, Long Y, and Ren J 2021 Chin. Phys. Lett. 38 027301 |
[24] | Roy Chowdhury P and Ruan X L 2022 npj Comput. Mater. 8 12 |
[25] | Tan Y, Wang L, Wang Z, Peng J, and Ren J 2021 Chin. Phys. B 30 036301 |
[26] | Yan S S, Liu Y, Wang Z, Lan X H, Wang Y, and Ren J 2023 Chin. Phys. B 32 057802 |
[27] | Dhar A 2008 Adv. Phys. 57 457 |
[28] | Zhai J X, Zhang Q Y, Cheng Z H, Ren J, Ke Y Q, and Li B W 2019 Phys. Rev. B 99 195429 |
[29] | Jiang P F, Ouyang Y L, Ren W J, Yu C Q, He J, and Chen J 2021 APL Mater. 9 040703 |
[30] | Yu C Q, Ouyang Y L, and Chen J 2022 Front. Phys. 17 53507 |
[31] | Liu Y and He D H 2021 Chin. Phys. Lett. 38 044401 |
[32] | Lepri S, Livi R, and Politi A 2003 Phys. Rep. 377 1 |
[33] | Anderson P W 1958 Phys. Rev. 109 1492 |
[34] | Ishii K 1973 Prog. Theor. Phys. Suppl. 53 77 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|