CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Contactless Microwave Detection of Shubnikov–De Haas Oscillations in Three-Dimensional Dirac Semimetal ZrTe$_{5}$ |
Min Wu1,2†, Hongwei Zhang1,3†, Xiangde Zhu1, Jianwei Lu1,2, Guolin Zheng1,4, Wenshuai Gao5, Yuyan Han1, Jianhui Zhou1, Wei Ning1**, Mingliang Tian1,5 |
1Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 2Department of Physics, University of Science and Technology of China, Hefei 230026 3Department of Physics, Shaanxi University of Science and Technology, Xi'an 710021 4School of Science, RMIT University, Melbourne, VIC 3001, Australia 5Department of Physics, School of Physics and Materials Science, Anhui University, Hefei 230601
|
|
Cite this article: |
Min Wu, Hongwei Zhang, Xiangde Zhu et al 2019 Chin. Phys. Lett. 36 067201 |
|
|
Abstract We report Shubnikov–de Haas (SdH) oscillations of a three-dimensional (3D) Dirac semimetal candidate of layered material ZrTe$_{5}$ single crystals through contactless electron spin resonance (ESR) measurements with the magnetic field up to 1.4 T. The ESR signals manifest remarkably anisotropic characteristics with respect to the direction of the magnetic field, indicating an anisotropic Fermi surface in ZrTe$_{5}$. Further experiments demonstrate that the ZrTe$_{5}$ single crystals have the signature of massless Dirac fermions with nontrivial $\pi$ Berry phase, key evidence for 3D Dirac/Weyl fermions. Moreover, the onset of quantum oscillation of our ZrTe$_{5}$ crystals revealed by the ESR can be derived down to 0.2 T, much smaller than the onset of SdH oscillation determined by conventional magnetoresistance measurements. Therefore, ESR measurement is a powerful tool to study the topologically nontrivial electronic structure in Dirac/Weyl semimetals and other topological materials with low bulk carrier density.
|
|
Received: 24 January 2019
Published: 18 May 2019
|
|
PACS: |
72.15.Gd
|
(Galvanomagnetic and other magnetotransport effects)
|
|
71.55.Ak
|
(Metals, semimetals, and alloys)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0401003, the National Natural Science Foundation of China under Grant Nos 11774353, 11574320, 11374302, 11804340, U1432251 and U1732274, the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology under Grant No 2018CXFX002, and the China Postdoctoral Science Foundation under Grant No 2018M630718. |
|
|
[1] | Wan X G, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 | [2] | Weng H M, Dai X and Fang Z 2016 J. Phys.: Condens. Matter 28 303001 | [3] | Burkov A A 2016 Nat. Mater. 15 1145 | [4] | He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402 | [5] | Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280 | [6] | Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023 | [7] | Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C and Yan B 2015 Nat. Phys. 11 645 | [8] | Yuan Z J, Lu H, Liu Y J, Wang J F and Jia S 2016 Phys. Rev. B 93 184405 | [9] | Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413 | [10] | Li C Z, Wang L X, Liu H, Wang J, Liao Z M and Yu D P 2015 Nat. Commun. 6 10137 | [11] | Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q and Wang J 2016 Nat. Commun. 7 10301 | [12] | Zhang C L, Xu S Y, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N, Lee C C, Huang S M, Chang T R, Chang G, Hsu C H, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J, Lin H, Zhang C, Lu H Z, Shen S Q, Neupert T, Hasan M Z and Jia S 2016 Nat. Commun. 7 10735 | [13] | Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosi? I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G D and Valla T 2016 Nat. Phys. 12 550 | [14] | Zheng G L, Lu J W, Zhu X D, Ning W, Han Y Y, Zhang H W, Zhang J L, Xi C Y, Yang J Y, Du H F, Yang K, Zhang Y H and Tian M L 2016 Phys. Rev. B 93 115414 | [15] | Wu M, Zheng G L, Chu W W, Liu Y Q, Gao W S, Zhang H W, Lu J W, Han Y Y, Zhou J H, Ning W and Tian M L 2018 Phys. Rev. B 98 161110(R) | [16] | Li H, Wang H W, He H, Wang J and Shen S Q 2018 Phys. Rev. B 97 201110(R) | [17] | Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205 | [18] | Xu G, Weng H M, Wang Z J, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806 | [19] | Liang T, Lin J, Gibson Q, Gao T, Hirschberger M, Liu M, Cava R J and Ong N P 2017 Phys. Rev. Lett. 118 136601 | [20] | Liang T, Lin J, Gibson Q, Kushwaha S, Liu M, Wang W, Xiong H, Sobota J A, Hashimoto M, Kirchmann P S, Shen Z X, Cava R J and Ong N P 2018 Nat. Phys. 14 451 | [21] | Potter A C, Kimchi I and Vishwanath A 2014 Nat. Commun. 5 5161 | [22] | Moll P J W, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A and Analytis J G 2016 Nature 535 266 | [23] | Zheng G L, Wu M, Zhang H W, Chu W W, Gao W S, Lu J W, Han Y Y, Yang J Y, Du H F, Ning W, Zhang Y H and Tian M L 2017 Phys. Rev. B 96 121407(R) | [24] | Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147 | [25] | Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821 | [26] | Analytis J G, McDonald R D, Riggs S C, Chu J H, Boebinger G S and Fisher I R 2010 Nat. Phys. 6 960 | [27] | Pariari A, Dutta P and Mandal P 2015 Phys. Rev. B 91 155139 | [28] | Hu J, Tang Z J, Liu J Y, Liu X, Zhu Y L, Graf D, Myhro K, Tran S, Lau C N, Wei J and Mao Z Q 2016 Phys. Rev. Lett. 117 016602 | [29] | Liu J Y, Hu J, Zhang Q, Graf D, Cao H B, Radmanesh S M A, Adams D J, Zhu Y L, Cheng G F, Liu X, Phelan W A, Wei J, Jaime M, Balakirev F, Tennant D A, DiTusa J F, Chiorescu I, Spinu L and Mao Z Q 2017 Nat. Mater. 16 905 | [30] | Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F and Wang N L 2015 Phys. Rev. Lett. 115 176404 | [31] | Chen R Y, Zhang S J, Schneeloch J A, Zhang C, Li Q, Gu G D and Wang N L 2015 Phys. Rev. B 92 075107 | [32] | Omling P, Meyer B and Emanuelsson P 1991 Appl. Phys. Lett. 58 931 | [33] | Linke H, Omling P, Ramvall P, Meyer B K, Drechsler M, Wetzel C, Rudeloff R and Scholz F 1993 J. Appl. Phys. 73 7533 | [34] | Linke H, Kowalski B, Ramvall P, Emanuelsson P, Omling P, Oettinger K, Drechsler M and Meyer B K 1993 Appl. Phys. Lett. 62 2725 | [35] | Drabinska A, Wo?os A, Kaminska M, Strupinski W and Baranowski J M 2012 Phys. Rev. B 86 045421 | [36] | Wolos A, Szyszko S, Drabinska A, Kaminska M, Strzelecka S G, Hruban A, Materna A and Piersa M 2012 Phys. Rev. Lett. 109 247604 | [37] | Shestakov A V, Fazlizhanov I I, Yatsyk I V, Gilmutdinov I F, Ibragimova M I, Shustov V A and Eremina R M 2018 J. Semicond. 39 052001 | [38] | Kamm G N, Gillespie D J, Ehrlich A C, Wieting T J and Levy F 1985 Phys. Rev. B 31 7617 | [39] | Weng H M, Dai X and Fang Z 2014 Phys. Rev. X 4 011002 | [40] | McIlroy D N, Moore S, Zhang D, Wharton J, Kempton B, Littleton R, Wilson M, Tritt T M and Olson C G 2004 J. Phys.: Condens. Matter 16 L359 | [41] | Zheng G L, Zhu X D, Liu Y Q, Lu J W, Ning W, Zhang H W, Gao W S, Han Y Y, Yang J Y, Du H F, Yang K, Zhang Y H and Tian M L 2017 Phys. Rev. B 96 121401(R) | [42] | Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press) | [43] | Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|