Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy
Gaoyuan Jiang1† , Yang Feng1† , Weixiong Wu1 , Shaorui Li1 , Yunhe Bai1 , Yaoxin Li1 , Qinghua Zhang2 , Lin Gu2 , Xiao Feng1 , Ding Zhang1 , Canli Song1 , Lili Wang1 , Wei Li1 , Xu-Cun Ma1 , Qi-Kun Xue1 , Yayu Wang1** , Ke He1**
1 State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Abstract :Quantum anomalous Hall (QAH) effect is a quantum Hall effect that occurs without the need of external magnetic field. A system composed of multiple parallel QAH layers is an effective high Chern number QAH insulator and the key to the applications of the dissipationless chiral edge channels in low energy consumption electronics. Such a QAH multilayer can also be engineered into other exotic topological phases such as a magnetic Weyl semimetal with only one pair of Weyl points. This work reports the first experimental realization of QAH multilayers in the superlattices composed of magnetically doped (Bi,Sb)$_{2}$Te$_{3}$ topological insulator and CdSe normal insulator layers grown by molecular beam epitaxy. The obtained multilayer samples show quantized Hall resistance $h/Ne^{2}$, where $h$ is Planck's constant, $e$ is the elementary charge and $N$ is the number of the magnetic topological insulator layers, resembling a high Chern number QAH insulator. The QAH multilayers provide an excellent platform to study various topological states of matter.
收稿日期: 2018-06-08
出版日期: 2018-06-09
:
68.35.bg
(Semiconductors)
73.23.Ad
(Ballistic transport)
71.20.Nr
(Semiconductor compounds)
73.20.At
(Surface states, band structure, electron density of states)
引用本文:
. [J]. 中国物理快报, 2018, 35(7): 76802-076802.
Gaoyuan Jiang, Yang Feng, Weixiong Wu, Shaorui Li, Yunhe Bai, Yaoxin Li, Qinghua Zhang, Lin Gu, Xiao Feng, Ding Zhang, Canli Song, Lili Wang, Wei Li, Xu-Cun Ma, Qi-Kun Xue, Yayu Wang, Ke He. Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy. Chin. Phys. Lett., 2018, 35(7): 76802-076802.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/35/7/076802
或
https://cpl.iphy.ac.cn/CN/Y2018/V35/I7/76802
[1] Haldane F D M 2017 Rev. Mod. Phys. 89 040502 [2] Wang J, Lian B and Zhang S C 2015 Phys. Scr. 2015 (T164) 014003 [3] Zhang X and Zhang S C 2012 Proc. SPIE-Int. Soc. Opt. Eng. 8373 837309 [4] Chang C Z, Zhang J, Feng X et al 2013 Science 340 167 [5] Checkelsky J G, Yoshimi R, Tsukazaki A et al 2014 Nat. Phys. 10 731 [6] Kou X, Guo S T, Fan Y et al 2014 Phys. Rev. Lett. 113 137201 [7] Kandala A, Richardella A, Kempinger S et al 2015 Nat. Commun. 6 7434 [8] Chang C Z, Zhao W, Kim D Y et al 2015 Nat. Mater. 14 473 [9] Ou Y, Liu C, Jiang G et al 2018 Adv. Mater. 30 1703062 [10] Komiyama S, Sakuma H, Ikushima K and Hirakawa K 2006 Phys. Rev. B 73 045333 [11] Wang J, Lian B, Zhang H et al 2013 Phys. Rev. Lett. 111 136801 [12] Datta S 2006 Quantum Transport: Atom to Transistor (New York: Cambridge University Press) [13] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205 [14] Eisenstein J P and MacDonald A H 2004 Nature 432 691 [15] Eisenstein J P 2014 Annu. Rev. Condens. Matter Phys. 5 159 [16] Shyju T S, Anandhi S, Indirajith R and Gopalakrishnan R 2011 J. Cryst. Growth 337 38 [17] Yan B and Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337 [18] Weng H, Fang C, Fang Z et al 2015 Phys. Rev. X 5 011029 [19] Huang S M, Xu S Y, Belopolski I et al 2015 Nat. Commun. 6 7373 [20] Xu S Y, Belopolski I, Alidoust N et al 2015 Science 349 613 [21] Lv B Q, Weng H M, F B B et al 2015 Phys. Rev. X 5 031013 [22] Yang L X, Liu Z K, Sun Y et al 2015 Nat. Phys. 11 728 [23] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 [24] Xu G, Weng H, Wang Z et al 2011 Phys. Rev. Lett. 107 186806 [25] Bulmash D, Liu C X and Qi X L 2014 Phys. Rev. B 89 081106(R)
[1]
. [J]. 中国物理快报, 0, (): 66802-.
[2]
. [J]. 中国物理快报, 2020, 37(6): 66802-.
[3]
. [J]. 中国物理快报, 2019, 36(7): 76801-076801.
[4]
. [J]. 中国物理快报, 2018, 35(3): 36801-.
[5]
. [J]. 中国物理快报, 2018, 35(2): 26802-.
[6]
. [J]. 中国物理快报, 2016, 33(06): 66802-066802.
[7]
. [J]. 中国物理快报, 2015, 32(03): 36801-036801.
[8]
. [J]. 中国物理快报, 2015, 32(03): 36802-036802.
[9]
. [J]. 中国物理快报, 2014, 31(12): 126601-126601.
[10]
. [J]. 中国物理快报, 2014, 31(05): 56801-056801.
[11]
SUN Bing, CHANG Hu-Dong, LU Li, LIU Hong-Gang** , WU De-Xin. High-Quality Single Crystalline Ge(111) Growth on Si(111) Substrates by Solid Phase Epitaxy [J]. 中国物理快报, 2012, 29(3): 36102-036102.
[12]
MENG Xiu-Qing**;FANG Yun-Zhang;WU Feng-Min. Amphiphilic Bio-molecules/ZnO Interface: Enhancement of Bio-affinity and Dispersibility [J]. 中国物理快报, 2012, 29(1): 16801-016801.
[13]
LIU Yan;AO Zhi-Min**;WANG Tao**;WANG Wen-Bo;SHENG Kuang;YU Bin;
. Transformation from AA to AB-Stacked Bilayer Graphene on α −SiO2 under an Electric Field [J]. 中国物理快报, 2011, 28(8): 87303-087303.
[14]
ZHONG Ze;SUN Li-Jie;CHEN Xiao-Qing;WU Xiao-Peng;FU Zhu-Xi. Effect of Zn Interstitials on Enhancing Ultraviolet Emission of ZnO Films Deposited by MOCVD [J]. 中国物理快报, 2010, 27(9): 96101-096101.
[15]
FU Ying-Shuang;JI Shuai-Hua;ZHANG Tong;CHEN Xi;JIA Jin-Feng;XUE Qi-Kun;MA Xu-Cun
. Modifying Quantum Well States of Pb Thin Films via Interface Engineering [J]. 中国物理快报, 2010, 27(6): 66804-066804.