Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi *
Xuguang Wang1,2 , Bingyu Xia3 , Jian Gou1,2 , Peng Cheng1,2 , Yong Xu3 , Lan Chen1,2** , Kehui Wu1,2,4**
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China2 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China3 Department of Physics, Tsinghua University, Beijing 100084, China4 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract :The hydrogenation of two-dimensional (2D) systems can efficiently modify the physical and chemical properties of materials. Here we report a systematic study on the hydrogenation of 2D semiconductor Sn$_{2}$Bi on Si(111) by scanning tunneling microscopy experiments and first principle calculations. The unique butterfly-like and trench-like features were observed for single H adsorption sites and hydrogen-saturated surfaces respectively, from which the bridge-site adsorption geometry can be unambiguously determined. The structural model was further confirmed by the theoretical calculations, which is in good agreement with the experimental observation. In addition, the hydrogenation is found to vanish the flat band of Sn$_{2}$Bi and increase the band gap obviously.
收稿日期: 2020-04-23
出版日期: 2020-05-26
PACS:
68.35.bg
(Semiconductors)
68.37.Ef
(Scanning tunneling microscopy (including chemistry induced with STM))
引用本文:
. [J]. 中国物理快报, 2020, 37(6): 66802-.
Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi *. Chin. Phys. Lett., 2020, 37(6): 66802-.
链接本文:
http://cpl.iphy.ac.cn/CN/10.1088/0256-307X/37/68/066802
或
http://cpl.iphy.ac.cn/CN/Y2020/V37/I6/66802
[1] Christmann K 1988 Surf. Sci. Rep. 9 1
[2] Kraus A, Hanbucken M, Neddermeyer H 2002 Anal. Bioanal. Chem. 374 688
[3] Mayne A J, Riedel D, Dujardin G 2006 Prog. Surf. Sci. 81 1
[4] Balog R, Jorgensen B, Wells J, Laegsgaard E, Hofmann P, Hornekaer L 2009 J. Am. Chem. Soc. 131 8744
[5] Qiu J, Fu H, Xu Y, Oreshkin A I, Shao T, Li H, Meng S, Wu K 2015 Phys. Rev. Lett. 114 126101
[6] Qiu J L, Fu H X, Xu Y, Zhou Q, Meng S, Li H, Wu K H 2015 ACS Nano 9 11192
[7] Boland J J 1991 Surf. Sci. 244 1
[8] Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hornekaer L 2010 Nat. Mater. 9 315
[9] Sofo J O, Barber G D 2007 Phys. Rev. B 75 153401
[10] Bobrov K, Mayne A, Comtet G, Hellner L 2003 Phys. Rev. B 68 195416
[11] Freitas R R Q, Rivelino R, de Brito Mota F, de Castilho C M C, Gueorguiev G K 2015 J. Phys. Chem. C 119 23599
[12] Fukuda T, Nakayama H 2006 Surf. Sci. 600 2443
[13] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Firsov A A 2004 Science 306 666
[14] Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Wu K H 2012 Nano Lett. 12 3507
[15] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Jia J F 2015 Nat. Mater. 14 1020
[16] Gou J, Kong L, Li H, Zhong Q, Li W, Cheng P, Chen L and Wu K 2017 Phys. Rev. Mater. 1 054004
[17] Deng J, Xia B, Ma X, Chen H, Shan H, Zhai X, Li B, Xu Y and Duan W 2018 Nat. Mater. 17 1081
[18] Gou J, Xia B, Li H, Wang X, Kong L, Cheng P, Li H, Zhang W, Qian T, Ding H, Xu Y, Duan W, Chen L 2018 Phys. Rev. Lett. 121 126801
[19] Ding Y and Wang Y 2019 Appl. Phys. Lett. 114 073103
[20] Vishkayi S I and Tagani M B 2020 J. Appl. Phys. 127 014302
[21] Li T, Yu J, Zhang B and Sun Q 2020 Nano Energy 67 104283
[22] Gou J, Kong L J, Li W B, Sheng S X, Li H, Meng S, Cheng P, Chen L 2018 Phys. Chem. Chem. Phys. 20 20188
[1]
. [J]. 中国物理快报, 2019, 36(7): 76801-076801.
[2]
. [J]. 中国物理快报, 2018, 35(7): 76802-076802.
[3]
. [J]. 中国物理快报, 2018, 35(3): 36801-.
[4]
. [J]. 中国物理快报, 2018, 35(2): 26802-.
[5]
. [J]. 中国物理快报, 2016, 33(06): 66802-066802.
[6]
. [J]. 中国物理快报, 2015, 32(03): 36801-036801.
[7]
. [J]. 中国物理快报, 2015, 32(03): 36802-036802.
[8]
. [J]. 中国物理快报, 2014, 31(12): 126601-126601.
[9]
. [J]. 中国物理快报, 2014, 31(05): 56801-056801.
[10]
SUN Bing, CHANG Hu-Dong, LU Li, LIU Hong-Gang** , WU De-Xin. High-Quality Single Crystalline Ge(111) Growth on Si(111) Substrates by Solid Phase Epitaxy [J]. 中国物理快报, 2012, 29(3): 36102-036102.
[11]
MENG Xiu-Qing**;FANG Yun-Zhang;WU Feng-Min. Amphiphilic Bio-molecules/ZnO Interface: Enhancement of Bio-affinity and Dispersibility [J]. 中国物理快报, 2012, 29(1): 16801-016801.
[12]
LIU Yan;AO Zhi-Min**;WANG Tao**;WANG Wen-Bo;SHENG Kuang;YU Bin;
. Transformation from AA to AB-Stacked Bilayer Graphene on α −SiO2 under an Electric Field [J]. 中国物理快报, 2011, 28(8): 87303-087303.
[13]
ZHONG Ze;SUN Li-Jie;CHEN Xiao-Qing;WU Xiao-Peng;FU Zhu-Xi. Effect of Zn Interstitials on Enhancing Ultraviolet Emission of ZnO Films Deposited by MOCVD [J]. 中国物理快报, 2010, 27(9): 96101-096101.
[14]
FU Ying-Shuang;JI Shuai-Hua;ZHANG Tong;CHEN Xi;JIA Jin-Feng;XUE Qi-Kun;MA Xu-Cun
. Modifying Quantum Well States of Pb Thin Films via Interface Engineering [J]. 中国物理快报, 2010, 27(6): 66804-066804.
[15]
WU Rui;WANG Li-Li;ZHANG Yi;MA Xu-Cun;JIA Jin-Feng;XUE Qi-Kun;. Atomic-Scale Study of Ge-Induced Incommensurate Phases on Si(111) [J]. 中国物理快报, 2010, 27(2): 26802-026802.