Electronic Phase Separation in Iron Selenide (Li,Fe)OHFeSe Superconductor System
Yiyuan Mao1,2,3†, Jun Li4†, Yulong Huan1,2,3†, Jie Yuan1,3, Zi-an Li1,3, Ke Chai5, Mingwei Ma1,3, Shunli Ni1,2, Jinpeng Tian1,2, Shaobo Liu1,2, Huaxue Zhou1, Fang Zhou1,2, Jianqi Li1,2,3, Guangming Zhang6, Kui Jin1,2,3, Xiaoli Dong1,2,3**, Zhongxian Zhao1,2,3**
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2University of Chinese Academy of Sciences, Beijing 100049 3Key Laboratory for Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049 4Research Institute of Superconductor Electronic, Nanjing University, Nanjing 210093 5School of Physics, Beijing Institute of Technology, Beijing 100081 6State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084
Abstract:The phenomenon of phase separation into antiferromagnetic (AFM) and superconducting (SC) or normal-state regions has great implication for the origin of high-temperature (high-$T_{\rm c}$) superconductivity. However, the occurrence of an intrinsic antiferromagnetism above the $T_{\rm c}$ of (Li,Fe)OHFeSe superconductor is questioned. Here we report a systematic study on a series of (Li,Fe)OHFeSe single crystal samples with $T_{\rm c}$ up to $\sim$41 K. We observe an evident drop in the static magnetization at $T_{\rm afm} \sim 125$ K, in some of the SC ($T_{\rm c} \lesssim 38$ K, cell parameter $c \lesssim 9.27$ Å) and non-SC samples. We verify that this AFM signal is intrinsic to (Li,Fe)OHFeSe. Thus, our observations indicate mesoscopic-to-macroscopic coexistence of an AFM state with the normal (below $T_{\rm afm}$) or SC (below $T_{\rm c}$) state in (Li,Fe)OHFeSe. We explain such coexistence by electronic phase separation, similar to that in high-$T_{\rm c}$ cuprates and iron arsenides. However, such an AFM signal can be absent in some other samples of (Li,Fe)OHFeSe, particularly it is never observed in the SC samples of $T_{\rm c} \gtrsim 38$ K, owing to a spatial scale of the phase separation too small for the macroscopic magnetic probe. For this case, we propose a microscopic electronic phase separation. The occurrence of two-dimensional AFM spin fluctuations below nearly the same temperature as $T_{\rm afm}$, reported previously for a (Li,Fe)OHFeSe ($T_{\rm c} \sim 42$ K) single crystal, suggests that the microscopic static phase separation reaches vanishing point in high-$T_{\rm c}$ (Li,Fe)OHFeSe. A complete phase diagram is thus established. Our study provides key information of the underlying physics for high-$T_{\rm c}$ superconductivity.
Müller K A and Benedek G 1993 Proceedings of the Workshop on Phase Separation in Cuprate Superconductors (Singapore: World Scientific)
[3]
Sigmund E and Müller K A 1994 Proceedings of the Second International Workshop on Phase Separation in Cuprate Superconductors (Berlin: Springer-Verlag)
[4]
Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y and Uchida S 1995 Nature375 561
[5]
Zhao Z X and Dong X L 1998 Gap Symmetry Fluctuations High-$T_{\rm c}$ Superconductors eds Bok J, Deutscher G, Pavuna D and Wolf S A (Cargese, France 1–13 September 1997) vol 371 p 171
[6]
Dong X L, Dong Z F, Zhao B R, Zhao Z X, Duan X F, Peng L M, Huang W W, Xu B, Zhang Y Z, Guo S Q, Zhao L H and Li L 1998 Phys. Rev. Lett.80 2701
[7]
Wu T, Mayaffre H, Kr?mer S, Horvati? M, Berthier C, Hardy W N, Liang R, Bonn D A and Julien M H 2011 Nature477 191
[8]
Campi G, Bianconi A, Poccia N, Bianconi G, Barba L, Arrighetti G, Innocenti D, Karpinski J, Zhigadlo N D, Kazakov S M, Burghammer M, Zimmermann M V, Sprung M and Ricci A 2015 Nature525 359
[9]
Caivano R, Fratini M, Poccia N, Ricci A, Puri A, Ren Z A, Dong X L, Yang J, Lu W, Zhao Z X, Barba L and Bianconi A 2009 Supercond. Sci. Technol.22 014004
[10]
Drew A J, Niedermayer C, Baker P J, Pratt F L, Blundell S J, Lancaster T, Liu R H, Wu G, Chen X H, Watanabe I, Malik V K, Dubroka A, Roessle M, Kim K W, Baines C and Bernhard C 2009 Nat. Mater.8 310
[11]
Goko T, Aczel A A, Baggio-Saitovitch E, Bud'ko S L, Canfield P C, Carlo J P, Chen G F, Dai P, Hamann A C, Hu W Z, Kageyama H, Luke G M, Luo J L, Nachumi B, Ni N, Reznik D, Sanchez-Candela D R, Savici A T, Sikes K J, Wang N L, Wiebe C R, Williams T J, Yamamoto T, Yu W and Uemura Y J 2009 Phys. Rev. B 80 024508
[12]
Park J T, Inosov D S, Niedermayer C, Sun G L, Haug D, Christensen N B, Dinnebier R, Boris A V, Drew A J, Schulz L, Shapoval T, Wolff U, Neu V, Yang X, Lin C T, Keimer B and Hinkov V 2009 Phys. Rev. Lett.102 117006
[13]
Chia E E M, Talbayev D, Zhu J X, Yuan H Q, Park T, Thompson J D, Panagopoulos C, Chen G F, Luo J L, Wang N L and Taylor A J 2010 Phys. Rev. Lett.104 027003
[14]
Wiesenmayer E, Luetkens H, Pascua G, Khasanov R, Amato A, Potts H, Banusch B, Klauss H H and Johrendt D 2011 Phys. Rev. Lett.107 237001
Wang Z, Song Y J, Shi H L, Wang Z W, Chen Z, Tian H F, Chen G F, Guo J G, Yang H X and Li J Q 2011 Phys. Rev. B 83 140505(R)
[17]
Chen F, Xu M, Ge Q Q, Zhang Y, Ye Z R, Yang L X, Jiang J, Xie B P, Che R C, Zhang M, Wang A F, Chen X H, Shen D W, Hu J P and Feng D L 2011 Phys. Rev. X 1 021020
[18]
Li W, Ding H, Deng P, Chang K, Song C L, He K, Wang L L, Ma X C, Hu J P, Chen X and Xue Q K 2012 Nat. Phys.8 126
[19]
Zhou Y, Miao L, Wang P, Zhu F F, Jiang W X, Jiang S W, Zhang Y, Lei B, Chen X H, Ding H F, Zheng H, Zhang W T, Jia J F, Qian D and Wu D 2018 Phys. Rev. Lett.120 097001
[20]
Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater.14 325
[21]
Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G and Zhao Z 2015 J. Am. Chem. Soc.137 66
[22]
Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X and Cheng J G 2018 Nat. Commun.9 380
[23]
Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z and Feng D L 2015 Phys. Rev. B 92 060504(R)
[24]
Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z and Zhou X J 2016 Nat. Commun.7 10608
[25]
Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F and Zhao Z 2015 Phys. Rev. B 92 064515
Pan B, Shen Y, Hu D, Feng Y, Park J T, Christianson A D, Wang Q, Hao Y, Wo H, Yin Z, Maier T A and Zhao J 2017 Nat. Commun.8 123
[31]
Huang Y L, Feng Z P, Yuan J, Hu W, Li J, Ni S L, Liu S B, Mao Y Y, Zhou H X, Wang H B, Zhou F, Zhang G M, Jin K, Dong X L and Zhao Z X 2017 arXiv:1711.02920
[32]
Huang Y, Feng Z, Ni S, Li J, Hu W, Liu S, Mao Y, Zhou H, Zhou F, Jin K, Wang H, Yuan J, Dong X and Zhao Z 2017 Chin. Phys. Lett.34 077404
[33]
Peng L M, Dong Z F, Dong X L, Zhao B R, Duan X F and Zhao Z X 2000 Micron31 551
Dong X L, Lu W, Yang J, Yi W, Li Z C, Zhang C, Ren Z A, Che G C, Sun L L, Zhou F, Zhou X J and Zhao Z X 2010 Phys. Rev. B 82 212506
[36]
Chen D P, Lin C T, Maljuk A and Zhou F 2016 Growth and Characterization of Bulk Superconductor Material (Switzerland: Springer)
[37]
Sun H, Woodruff D N, Cassidy S J, Allcroft G M, Sedlmaier S J, Thompson A L, Bingham P A, Forder S D, Cartenet S, Mary N, Ramos S, Foronda F R, Williams B H, Li X, Blundell S J and Clarke S J 2015 Inorg. Chem.54 1958
[38]
Pachmayr U, Nitsche F, Luetkens H, Kamusella S, Brueckner F, Sarkar R, Klauss H H and Johrendt D 2015 Angew. Chem. Int. Ed.54 293