Impact of Native Defects in the High Dielectric Constant Oxide HfSiO$_{4}$ on MOS Device Performance
Hai-Kuan Dong, Li-Bin Shi**
School of Mathematics and Physics, Bohai University, Jinzhou 121013
Abstract :Native defects in HfSiO$_{4}$ are investigated by first principles calculations. Transition levels of native defects can be accurately described by employing the nonlocal HSE06 hybrid functional. This methodology overcomes the band gap problem in traditional functionals. By band alignments among the Si, GaAs and HfSiO$_{4}$, we are able to determine the position of defect levels in Si and GaAs relative to the HfSiO$_{4}$ band gap. We evaluate the possibility of these defects acting as fixed charge. Native defects lead to the change of valence and conduction band offsets. Gate leakage current is evaluated by the band offset. In addition, we also investigate diffusions of native defects, and discuss how they affect the MOS device performance.
收稿日期: 2015-05-25
出版日期: 2016-01-29
:
61.72.-y
(Defects and impurities in crystals; microstructure)
71.55.-i
(Impurity and defect levels)
66.30.Lw
(Diffusion of other defects)
[1] Wei H H, He G, Chen X S, Cui J B, Zhang M, Chen H S and Sun Z Q 2014 J. Alloys Compd. 591 240 [2] He G, Chen X S and Sun Z Q 2013 Surf. Sci. Rep. 68 68 [3] Yang Y L, Fan X L, Liu C and Ran R X 2014 Physica B 434 7 [4] Zhao L, Nelson M, Aldridge H, Iamsasri T, Fancher C M, Forrester J S, Nishida T, Moghaddam S and Jones J L 2014 J. Appl. Phys. 115 034104 [5] Cisneros-Morales M C and Aita C R 2012 J. Appl. Phys. 111 109904 [6] Munoz Ramo D, Sushko P V and Shluger A L 2012 Phys. Rev. B 85 024120 [7] Janotti A and Van de Walle C G 2007 Phys. Rev. B 76 165202 [8] Tang C and Ramprasad R 2010 Phys. Rev. B 81 161201(R) [9] Shi L B, Wang Y P and Li M B 2014 Mater. Sci. Semicond. Process. 27 586 [10] Chang P, Chiu H, Lin T, Huang M, Chang W, Wu S, Wu K, Hong M and Kwo J 2011 Appl. Phys. Express 4 114202 [11] Peng H 2008 Phys. Lett. A 372 1527 [12] Yu Z G, Zhang J and Singh D J 2012 Phys. Rev. B 85 144106 [13] Ghosh S, Wang Q, Das G P and Jena P 2010 Phys. Rev. B 81 235215 [14] Mattioli G, Alippi P, Filippone F, Caminiti R and Amore Bonapasta A 2010 J. Phys. Chem. C 114 21694 [15] Sheetz R M, Ponomareva I, Richter E, Andriotis A N and Menon M 2009 Phys. Rev. B 80 195314 [16] Heyd J, Peralta J E and Scuseria G E 2005 J. Chem. Phys. 123 174101 [17] Xiong K, Du Y, Tse K and Robertson J 2007 J. Appl. Phys. 101 024101 [18] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 [19] Zhang S B, Wei S H and Zunger A 1998 Phys. Rev. B 57 9642 [20] Mattila T and Zunger A 1998 Phys. Rev. B 58 1367 [21] Pruneda J M and Artacho E 2005 Phys. Rev. B 71 094113 [22] Lyons J L, Janotti A and Van de Walle C G 2011 Microelectron. Eng. 88 1452 [23] Van de Walle C G, Choi M, Weber J R, Lyons J L and Janotti A 2013 Microelectron. Eng. 109 211 [24] Kato H, Nango T, Miyagawa T, Katagiri T, Seol K S and Ohki Y 2002 J. Appl. Phys. 92 1106 [25] Van de Walle C G and Neugebauer J 2003 Nature 423 626 [26] Foster A S, Sulimov V B, Gejo F L, Shluger A L and Nieminen R M 2001 Phys. Rev. B 64 224108 [27] Sun Q Q, Shi Y, Dong L, Liu H, Ding S J and Zhang D W 2008 Appl. Phys. Lett. 92 102908 [28] Sun Q Q, Chen W, Ding S J, Xu M, Lu H L, Zhang D W and Wang L K 2007 Appl. Phys. Lett. 90 142904 [29] Foster A S, Shluger A L and Nieminen R M 2002 Phys. Rev. B 25 225901
[1]
. [J]. 中国物理快报, 2022, 39(7): 77402-.
[2]
. [J]. 中国物理快报, 2022, 39(4): 46101-046101.
[3]
. [J]. 中国物理快报, 2021, 38(10): 106101-.
[4]
. [J]. 中国物理快报, 2021, 38(2): 26103-.
[5]
. [J]. 中国物理快报, 2021, 38(1): 17101-.
[6]
. [J]. 中国物理快报, 2020, 37(4): 44204-.
[7]
. [J]. 中国物理快报, 2020, 37(3): 36101-.
[8]
. [J]. 中国物理快报, 2020, 37(1): 16103-.
[9]
. [J]. 中国物理快报, 2019, 36(11): 116101-.
[10]
. [J]. 中国物理快报, 2019, 36(3): 37801-.
[11]
. [J]. 中国物理快报, 2018, 35(9): 97302-.
[12]
. [J]. 中国物理快报, 2018, 35(7): 77103-.
[13]
. [J]. 中国物理快报, 2017, 34(9): 96101-.
[14]
. [J]. 中国物理快报, 2017, 34(7): 76105-.
[15]
. [J]. 中国物理快报, 2017, 34(7): 77801-.