Comparative Study of Substitutional N and Substitutional P in Diamond
Hong-Yu Yu1,2 , Nan Gao1** , Hong-Dong Li1 , Xu-Ri Huang2 , Tian Cui1
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 1300122 Institute of Theoretical Chemistry, Jilin University, Changchun 130012
Abstract :Based on density functional theory calculations, it is found that for substitutional N in diamond the $C_{3v}$ symmetry structure is more stable, while $C_{3v}$ and $D_{2d}$ symmetry patterns for the substitutional P in diamond have comparable energies. Moreover, the substitutional N is a deep donor for diamond, while P is a shallow substitutional n-type dopant. This is attributed to the different doping positions of dopant (the N atom is seriously deviated from the substitutional position, while the P atom nearly locates in the substitutional site), which are determined by the atomic radius.
收稿日期: 2019-06-14
出版日期: 2019-10-21
:
61.72.-y
(Defects and impurities in crystals; microstructure)
71.20.-b
(Electron density of states and band structure of crystalline solids)
[1] Singh J 1993 Physics of Semiconductors and Their Heterostructures (New York: McGraw-Hill) [2] Crowther P A, Dean P J and Sherman W F 1967 Phys. Rev. 154 772 [3] Goss J P and Briddon P R 2007 Phys. Rev. B 75 075202 [4] Khmelnitsky R, Saraykin V, Dravin V, Zavedeyev E, Makarov S, Bronsky V and Gippius A 2016 Surf. Coat. Technol. 307 236 [5] Yan C, Dai Y, Huang B, Long R and Guo M 2009 Comput. Mater. Sci. 44 1286 [6] Smith W V, Sorokin P P, Gelles I L and Lasher G J 1959 Phys. Rev. 115 1546 [7] Kajihara S A, Antonelli A, Bernholc J and Car R 1991 Phys. Rev. Lett. 66 2010 [8] Joseph P, Tai N, Lee C Y, Niu H, Pong W and Lin I 2008 J. Appl. Phys. 103 043720 [9] Ivanova T A and Mavrin B N 2014 Crystallogr. Rep. 59 93 [10] Czelej K, Śpiewak P and Kurzydłowski K J 2016 MRS Adv. 1 1093 [11] Isoya J, Katagiri M, Umeda T, Koizumi S, Kanda H, Son N T, Henry A, Gali A and Janzén E 2006 Physica B 376 358 [12] Alfieri G, Kranz L and Mihaila A 2018 Phys. Status Solidi RRL 12 1700409 [13] Hunn J D, Parikh N R, Swanson M L and Zuhr R A 1993 Diamond Relat. Mater. 2 847 [14] Farrer R G 1969 Solid State Commun. 7 685 [15] Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H and Hu H 2011 J. Appl. Phys. 109 053524 [16] Sakaguchi I, Gamo M N, Kikuchi Y, Yasu E, Haneda H, Suzuki T and Ando T 1999 Phys. Rev. B 60 R2139 [17] Sque S J, Jones R, Goss J P and Briddon P R 2004 Phys. Rev. Lett. 92 017402 [18] Yan C X, Dai Y and Huang B B 2009 J. Phys. D 42 145407 [19] Bhattacharyya S 2004 Phys. Rev. B 70 125412 [20] Atumi M K, Goss J P, Briddon P R and Rayson M J 2013 Phys. Rev. B 88 245301 [21] Lombardi E B, Mainwood A, Osuch K and Reynhardt E C 2003 J. Phys.: Condens. Matter 15 3135 [22] Gheeraert E, Koizumi S, Teraji T and Kanda H 2000 Solid State Commun. 113 577 [23] Butorac B and Mainwood A 2008 Phys. Rev. B 78 235204 [24] Yamamoto T, Janssens S D, Ohtani R, Takeuchi D and Koizumi S 2016 Appl. Phys. Lett. 109 182102 [25] Kato H, Yamasaki S and Okushi H 2005 Appl. Phys. Lett. 86 222111 [26] Koizumi S, Watanabe K, Hasegawa M and Kanda H 2001 Science 292 1899 [27] Blöchl P E 1994 Phys. Rev. B 50 17953 [28] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [30] Hernández E 2001 J. Chem. Phys. 115 10282 [31] Eyre R J, Goss J P, Briddon P R and Wardle M G 2007 Phys. Status Solidi A 204 2971 [32] Deák P, Aradi B, Gali A and Frauenheim T 2011 Phys. Status Solidi B 248 790 [33] Lombardi E B and Mainwood A 2008 Diamond Relat. Mater. 17 1349 [34] Tang L, Yue R and Wang Y 2018 Carbon 130 458 [35] Yu H Y, Gao N, Li H D, Huang X R, Duan D F, Bao K, Zhu M F, Liu B B and Cui T 2019 Chin. Phys. B 28 088102 [36] Deák P, Aradi B, Kaviani M, Frauenheim T and Gali A 2014 Phys. Rev. B 89 075203 [37] Li X Q, Zhao Y F, Tang Y N and Yang W J 2018 Acta Phys. Sin. 67 070302 (in Chinese) [38] Stoneham A M, Harker A H and Morley G W 2009 J. Phys.: Condens. Matter 21 1364222 [39] Orita N, Nishimatsu T and Katayama-Yoshida H 2007 Jpn. J. Appl. Phys. 46 315 [40] Segev D and Wei S H 2003 Phys. Rev. Lett. 91 126406 [41] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[1]
. [J]. 中国物理快报, 2022, 39(7): 77402-.
[2]
. [J]. 中国物理快报, 2022, 39(4): 46101-046101.
[3]
. [J]. 中国物理快报, 2021, 38(10): 106101-.
[4]
. [J]. 中国物理快报, 2021, 38(2): 26103-.
[5]
. [J]. 中国物理快报, 2021, 38(1): 17101-.
[6]
. [J]. 中国物理快报, 2020, 37(4): 44204-.
[7]
. [J]. 中国物理快报, 2020, 37(3): 36101-.
[8]
. [J]. 中国物理快报, 2020, 37(1): 16103-.
[9]
. [J]. 中国物理快报, 2019, 36(3): 37801-.
[10]
. [J]. 中国物理快报, 2018, 35(9): 97302-.
[11]
. [J]. 中国物理快报, 2018, 35(7): 77103-.
[12]
. [J]. 中国物理快报, 2017, 34(9): 96101-.
[13]
. [J]. 中国物理快报, 2017, 34(7): 76105-.
[14]
. [J]. 中国物理快报, 2017, 34(7): 77801-.
[15]
. [J]. 中国物理快报, 2016, 33(08): 87301-087301.