摘要We perform the analysis of evolution of cosmic string loops in the background of Gauss--Bonnet--de Sitter. The equation of motion of cosmic string loops in this spacetime is derived. Having solved the equation numerically, we investigate the dependence of the loop evolution on the values of α, related to the Gauss--Bonnet coupling. In the Gauss--Bonnet--de Sitter spacetimes with different dimensionality there exists a special parameter αm. In the environment with α>αm, all the cosmic string loops will collapse to form black holes. Within the region 0<α<αm, the stronger Gauss--Bonnet effect will lead more cosmic string loops, including smaller ones, to form black holes. The larger the value of α is, the smaller the special values that exist, and only the cosmic string loops with initial radius larger than the special values can expand and evolve instead of becoming black holes.
Abstract:We perform the analysis of evolution of cosmic string loops in the background of Gauss--Bonnet--de Sitter. The equation of motion of cosmic string loops in this spacetime is derived. Having solved the equation numerically, we investigate the dependence of the loop evolution on the values of α, related to the Gauss--Bonnet coupling. In the Gauss--Bonnet--de Sitter spacetimes with different dimensionality there exists a special parameter αm. In the environment with α>αm, all the cosmic string loops will collapse to form black holes. Within the region 0<α<αm, the stronger Gauss--Bonnet effect will lead more cosmic string loops, including smaller ones, to form black holes. The larger the value of α is, the smaller the special values that exist, and only the cosmic string loops with initial radius larger than the special values can expand and evolve instead of becoming black holes.
(Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))
引用本文:
CHENG Hong-Bo;LIU Yun-Qi. Circular Loop Equation of a Cosmic String in Gauss--Bonnet--de[J]. 中国物理快报, 2008, 25(3): 1160-1163.
CHENG Hong-Bo, LIU Yun-Qi. Circular Loop Equation of a Cosmic String in Gauss--Bonnet--de. Chin. Phys. Lett., 2008, 25(3): 1160-1163.
[1] Vielenkin A and Shellard E P S 1994 Cosmic Strings andOther Topological Defects (Cambridge: Cambridge University Press) [2] Hindmarsh M B and Kibble T W B 1995 Rep. Prog. Phys. 58 477 [3] Sarangi S and Tye S H 2002 Phys. Lett. B 536 185 [4] Dvali G and Vilenkin A 2004 J. Cosmol. Astropart. Phys. 03 010 [5] Copeland E J, Myers R C and Polchinski J 2004 J. HighEnergy Phys. 06 013 [6] Pogosian L, Wyman M C and Wasserman I 2004 J. Cosmol.Astropart. Phys. 09 008 [7] Jeong E and Smoot G F 2004 astro-ph/0406432 [8] Sazhin M V et al 2004 astro-ph/0406516 [9] Bennett D P and Bouchet F R 1991 Phys. Rev. D 432733 [10] Damour T and Vilenkin A 2005 Phys. Rev. D 71 063510 [11] Hogan C J 2006 Phys. Rev. D 74 043526 [12] Kibble T W B 1980 Phys. Rep. 67 183 [13] Vilenkin A 1985 Phys. Rep. 121 263 [14] Garriga J and Vilenkin A 1993 Phys. Rev. D 47 3265 [15] Larsen A L 1994 Phys. Rev. D 50 2623 [16] Anderson M R 2003 The Mathematical Theory of CosmicString---Cosmic Strings in the Wire Approximation (Bristol: IOPPublishing) [17] Li X and Cheng H 1996 Class. Quantum Grav. 13 225 [18] Dabrowski M P and Larsen A L 1998 Phys. Rev. D 57 5108 [19] Gu Z and Cheng H 2007 Gen. Rel. Grav. 39 1 [20] Cheng H and Li X 1996 Chin. Phys. Lett. 13 317 [21] Olum K D and Vilenkin A 2006 Phys. Rev. D 74 063516 [22] Abdalla E and Konoplya R A 2005 Phys. Rev. D 72 084006 [23] Gleiser R J and Dotti G 2005 Phys. Rev. D 72 124002 [24] Sahabandu C, Suranyi P, Vaz C and Wijewardhana L C R 2006 Phys. Rev. D 73 044009 [25] Dominguez A E and Gallo E 2006 Phys. Rev. D 73 064018 [26] Maeda H and Dadhich N 2006 Phys. Rev. D 74 021501(R)