摘要The properties of Q-balls in the complex signum-Gordon model in d spatial dimensions is studied. We obtain a general virial relation for this kind of Q-ball in higher-dimensional spacetime. We compute the energy and radii of a Q-ball with a V-shaped field potential as a function of spatial dimensionality and a parameter defining the model potential energy density to show that this kind of Q-ball can also survive stably in high-dimensional spacetime.
Abstract:The properties of Q-balls in the complex signum-Gordon model in d spatial dimensions is studied. We obtain a general virial relation for this kind of Q-ball in higher-dimensional spacetime. We compute the energy and radii of a Q-ball with a V-shaped field potential as a function of spatial dimensionality and a parameter defining the model potential energy density to show that this kind of Q-ball can also survive stably in high-dimensional spacetime.
(Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))
引用本文:
WANG Hua-Wen;CHENG Hong-Bo*
. Virial Relation for Compact Q-Balls in the Complex Signum-Gordon Model[J]. 中国物理快报, 2011, 28(12): 121101-121101.
WANG Hua-Wen, CHENG Hong-Bo*
. Virial Relation for Compact Q-Balls in the Complex Signum-Gordon Model. Chin. Phys. Lett., 2011, 28(12): 121101-121101.
[1] Lee T D and Pang Y 1992 Phys. Rep. 221 251
[2] Friedberg R, Lee T D and Pang Y 1987 Phys. Rev. D 35 3658
[3] Coleman S 1985 Nucl. Phys. B 262 263
[4] Kusenko A and Shaposhnikov M E 1998 Phys. Lett. B 418 46
[5] Kusenko A and Steinhardt P J 2001 Phys. Rev. Lett. 87 141301
[6] Mielke E and Schunck F 2002 Phys. Rev. D 66 023503
[7] Bunkov Y M and Volovik G E 2007 Phys. Rev. Lett. 98 265302
[8] Dvali G R, Kusenko A and Shaposhnikov M E 1998 Phys. Lett. B 417 99
[9] Kusenko A, Kuzmin V, Shaposhnikov M E and Tinyakov P G 1998 Phys. Rev. Lett. 80 3185
[10] Cecchini S et al 2008 Eur. Phys. J. C 57 525
[11] Takenaga Y et al 2007 Phys. Lett. B 647 18
[12] Kaup D J 1968 Phys. Rev. 172 1331
[13] Jetzer P 1992 Phys. Rep. 220 163
[14] Schunck F E and Mielke E 2003 Class. Quantum Grav. 20 R301
[15] Schunck F E and Mielke E 1998 Phys. Lett. A 249 389
[16] Colpi M, Shapiro S L and Wasserman I 1986 Phys. Rev. Lett. 57 2485
[17] Kleihaus B, Kunz J and List M 2005 Phys. Rev. D 72 064002
[18] Kleihaus B, Kunz J, List M and Schaffer I 2008 Phys. Rev. D 77 064025
[19] Brihaye Y and Hartmann B 2009 Phys. Rev. D 79 064013
[20] Cheng H and Gu Z 2005 J. East Chin. Univ. Sci. Technol. 31 509
[21] Cheng H and Gu Z 2007 J. East Chin. Univ. Sci. Technol. 33 294
[22] Kaluza T 1921 Sitz. Preuss. Akad. Wiss. Phys. Math. K 1 966
[23] Klein O 1926 Z. Phys. 37 895
[24] Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 3370
[25] Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 4690
[26] Arodz H, Klimas P and Tyranowski T 2005 Acta Phys. Pol. B 36 3861
[27] Arodz H and Lis J 2008 Phys. Rev. D 77 107702
[28] Arodz H and Lis J 2009 Phys. Rev. D 79 045002
[29] Gleiser M and Thorarinson J 2006 Phys. Rev. D 73 065008