Inflation and Singularity in Einstein–Cartan Theory
HUANG Zeng-Guang1**, FANG Wei2,4, LU Hui-Qing3,4**
1School of Science, Huaihai Institute of Technology, Lianyungang 222005 2Department of Physics, Shanghai Normal University, Shanghai 200234 3Department of Physics, Shanghai University, Shanghai 200444 4The Shanghai Key Lab of Astrophysics, Shanghai Normal University, Shanghai 200234
Inflation and Singularity in Einstein–Cartan Theory
HUANG Zeng-Guang1**, FANG Wei2,4, LU Hui-Qing3,4**
1School of Science, Huaihai Institute of Technology, Lianyungang 222005 2Department of Physics, Shanghai Normal University, Shanghai 200234 3Department of Physics, Shanghai University, Shanghai 200444 4The Shanghai Key Lab of Astrophysics, Shanghai Normal University, Shanghai 200234
摘要Within the framework of Einstein–Cartan theory, we obtain a general condition leading to singularity and inflation for all Bianchi cosmological models. If the spin energy is smaller than anisotropic energy density (i.e. S2−σ2≤0), the Universe can not avoid singularity. If S2−σ2>-ρv/2 (ρv is vacuum energy density), the Universe can undergo an inflation phase. Examples of Bianchi type−IX, I and V cosmological models are discussed.
Abstract:Within the framework of Einstein–Cartan theory, we obtain a general condition leading to singularity and inflation for all Bianchi cosmological models. If the spin energy is smaller than anisotropic energy density (i.e. S2−σ2≤0), the Universe can not avoid singularity. If S2−σ2>-ρv/2 (ρv is vacuum energy density), the Universe can undergo an inflation phase. Examples of Bianchi type−IX, I and V cosmological models are discussed.
(Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))
[1] Hehl F W, Heyde P V, Kerlick G D and Nester J M 1976 Rev. Mod. Phys. 48 393
[2] Tsampartis M 1979 Phys. Lett. A 75 27
[3] Lu H Q and Cheng K S 1995 Class. Quant. Grav. 12 2755
[4] Trautman A 1973 Nature 242 7
[5] Trautman A 1975 Ann. N. Y. Acad. Sci. 262 241
[6] Tsoubelis D 1979 Phys. Rev. D 20 3004
[7] Raychaudhuri A K 1975 Phys. Rev. D 12 952
[8] Kong K H, Cheung P C H, Lu H Q and Cheng K S 1999 Astrophys. Space Sci. 260 521
[9] Obukhov Yu N and Korotky V A 1987 Class. Quant. Grav. 4 1633
[10] Maeda K 1988 Proc. Fifth Marcel Grossmann on General Relativity (Perth Australia) 145
[11] Wald R M 1983 Phys. Rev. D 28 2118
[12] Borzeszkowski H H V and Miiller V 1978 Ann. der Physik(Leipzig) 7 361
[13] Martinez-Gonzalez E and Jones B J T 1986 Phys. Lett. B 167 37
[14] Barrow J 1977 Mon. Not. R. Astron. Soc. 178 625
[15] Lu H Q, Harko T and Mak M K 2001 Int. J. Mod. Phys. D 10 315
[16] Lu H Q Proceedings of the 21st Century Chinese Astronomy Conference (Hong Kong 1–4 August 1996) p 475
[17] Brechet S D, Hobson M P and Lasenby A N 2007 Class. Quantum Grav. 24 6329
[18] Brechet S D, Hobson M P and Lasenby A N 2008 Class. Quantum Grav. 25 245016
[19] Berredo-Peixoto G de and Freitas E A de 2009 Class. Quantum Grav. 26 175015
[20] Fang W, Huang Z G and Lu H Q 2010 arXiv.1011.2047(hep-th)
[21] Binney J and Tremaine S 1987 Galactic Dynamics (Princeton: Princeton University)