Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term
R. K. Tiwari1*, S. Sharma2**
1Department of Mathematics, Govt. Model Science College, Rewa (MP) India 2Department of Mathematics, Rayat Polytechnic College, SBS Nagar, (Punjab) India
Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term
R. K. Tiwari1*, S. Sharma2**
1Department of Mathematics, Govt. Model Science College, Rewa (MP) India 2Department of Mathematics, Rayat Polytechnic College, SBS Nagar, (Punjab) India
摘要Einstein field equations with the cosmological constant is considered in the presence of bulk viscosity in a Bianchi type-I universe. Solutions of the field equations are obtained by assuming the following conditions: the bulk viscosity is proportional to the expansion scalar ξ∝θ; the expansion scalar is proportional to shear scalar θ∝σ; and Λ is proportional to the Hubble parameter Λ∝H. The corresponding interpretations of the cosmological solutions are also discussed.
Abstract:Einstein field equations with the cosmological constant is considered in the presence of bulk viscosity in a Bianchi type-I universe. Solutions of the field equations are obtained by assuming the following conditions: the bulk viscosity is proportional to the expansion scalar ξ∝θ; the expansion scalar is proportional to shear scalar θ∝σ; and Λ is proportional to the Hubble parameter Λ∝H. The corresponding interpretations of the cosmological solutions are also discussed.
(Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))
引用本文:
R. K. Tiwari*;S. Sharma**
. Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. 中国物理快报, 2011, 28(9): 90401-090401.
R. K. Tiwari*, S. Sharma**
. Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term. Chin. Phys. Lett., 2011, 28(9): 90401-090401.
[1] Pavon D 1991 Phys. Rev. D 43 375
[2] Letelier P S 1979 Phys. Rev. D 20 1294
[3] Stachel J 1980 Phys. Rev. D 21 2171
[4] Gott J R 1985 Astrophys. J. 288 422
[5] Letelier P S 1983 Phys. Rev. D 28 2414
[6] Chakraborty S 1991 Indian J. Pure Appl. Phys. 29 31
[7] Kibble T W B 1976 J. Phys. A 9 1387
[8] Wang X X 2006 Chin. Phys. Lett. 23 1702
[9] Bali R and Upadhaya R D 2003 Astrophys. Space Sci. 288 287
[10] Bali R, Pradhan A 2007 Chin. Phys. Lett. 24 585
[11] Adhav K S, Nimkar A S, Dawande M V and Ugale M R 2009 Rom. J. Phys. 54 207
[12] Zhang H et al 2005 Mod. Phys. Lett. A 21 159
[13] Yadav M K, Rai A and Pradhan A 2007 Int. J. Theor. Phys. 46 2677
[14] Bali R and Anjali 2004 Pramana 63 481
[15] Tiwari R K 2008 Astrophys. Space Sci. 318 243
[16] Wang X X 2003 Chin. Phys. Lett. 20 615
[17] Wang X X 2004 Chin. Phys. Lett. 21 1205
[18] Wang X X 2005 Chin. Phys. Lett. 22 29
[19] Singh J P, Tiwari R K and Pratibha S 2007 Chin. Phys. Lett. 24 3325
[20] Vishwakarma R G 2005 Gen. Relat. Gravit. 37 1305
[21] Beesham A 1993 Phys. Rev. D 48 3539
[22] Tiwari R K 2011 Res. Astron. Astrophys. 11 767
[23] Pradhan A, Rai V and Singh R S 2007 Fizika B 16 99
[24] Pradhan A, Jotania K and Rai A 2006 Fizika B 15 163
[25] Tiwari R K and Dwivedi U K 2009 Fizika B 18 181
[26] Tiwari R K and Sonia S 2011 Chin. Phys. Lett. 28 020401
[27] Roy S R, Narain S and Singh J P 1985 Aust. J. Phys. 38 239
[28] Collins C B and Glass E N Wilkinson D A 1980 Gen. Relat. Gravit. 10 805
[29] Arbab A I 1997 Gen. Relat. Gravit. 29 61
[30] Schutzhold R 2002 Phys. Rev. Lett. 89 081302